Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
J Hepatol ; 78(2): 343-355, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36309131

RESUMEN

BACKGROUND & AIMS: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored. METHODS: Using humanized monoclonal antibodies (mAbs) specifically targeting the extracellular loop of human non-junctional CLDN1 and a large series of patient-derived cell-based and animal model systems we aimed to investigate the role of CLDN1 as a therapeutic target for HCC. RESULTS: Targeting non-junctional CLDN1 markedly suppressed tumor growth and invasion in cell line-based models of HCC and patient-derived 3D ex vivo models. Moreover, the robust effect on tumor growth was confirmed in vivo in a large series of cell line-derived xenograft and patient-derived xenograft mouse models. Mechanistic studies, including single-cell RNA sequencing of multicellular patient HCC tumorspheres, suggested that CLDN1 regulates tumor stemness, metabolism, oncogenic signaling and perturbs the tumor immune microenvironment. CONCLUSIONS: Our results provide the rationale for targeting CLDN1 in HCC and pave the way for the clinical development of CLDN1-specific mAbs for the treatment of advanced HCC. IMPACT AND IMPLICATIONS: Hepatocellular carcinoma (HCC) is associated with high mortality and unsatisfactory treatment options. Herein, we identified the cell surface protein Claudin-1 as a treatment target for advanced HCC. Monoclonal antibodies targeting Claudin-1 inhibit tumor growth in patient-derived ex vivo and in vivo models by modulating signaling, cell stemness and the tumor immune microenvironment. Given the differentiated mechanism of action, the identification of Claudin-1 as a novel therapeutic target for HCC provides an opportunity to break the plateau of limited treatment response. The results of this preclinical study pave the way for the clinical development of Claudin-1-specific antibodies for the treatment of advanced HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Claudina-1/genética , Neoplasias Hepáticas/genética , Carcinógenos , Microambiente Tumoral , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral
3.
Nature ; 546(7658): 426-430, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607489

RESUMEN

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


Asunto(s)
Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfofructoquinasa-1/metabolismo , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Purinas/farmacología , Purinas/uso terapéutico , Piruvato Quinasa/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314710

RESUMEN

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteína de Retinoblastoma/genética , Animales , Células Cultivadas , Colon/fisiopatología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Pulmón/fisiopatología , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Proteína de Retinoblastoma/metabolismo , Estrés Fisiológico/genética , Transcriptoma
5.
Nature ; 539(7629): 390-395, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799657

RESUMEN

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Asunto(s)
Transformación Celular Neoplásica , Metilación de ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Glicina/metabolismo , Glucólisis , Humanos , Ratones , Conductos Pancreáticos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Retroelementos/genética , S-Adenosilmetionina/metabolismo , Serina/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Transaminasas/metabolismo
6.
Mol Cell ; 53(6): 993-1004, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24613344

RESUMEN

Chromosome instability (CIN), a common feature of solid tumors, promotes tumor evolution and increases drug resistance during therapy. We previously demonstrated that loss of the retinoblastoma protein (pRB) tumor suppressor causes changes in centromere structure and generates CIN. However, the mechanism and significance of this change was unclear. Here, we show that defects in cohesion are key to the pRB loss phenotype. pRB loss alters H4K20 methylation, a prerequisite for efficient establishment of cohesion at centromeres. Changes in cohesin regulation are evident during S phase, where they compromise replication and increase DNA damage. Ultimately, such changes compromise mitotic fidelity following pRB loss. Remarkably, increasing cohesion suppressed all of these phenotypes and dramatically reduced CIN in cancer cells lacking functional pRB. These data explain how loss of pRB undermines genomic integrity. Given the frequent functional inactivation of pRB in cancer, conditions that increase cohesion may provide a general strategy to suppress CIN.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Proteína de Retinoblastoma/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Centrómero , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Genoma Humano , Histonas/metabolismo , Humanos , Metilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/metabolismo , Fase S/genética , Transducción de Señal , Cohesinas
7.
Nature ; 524(7565): 361-5, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26168401

RESUMEN

Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.


Asunto(s)
Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Aminoácidos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metabolismo Energético , Femenino , Xenoinjertos , Homeostasis , Humanos , Lisosomas/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Transcripción Genética
8.
Genes Dev ; 27(2): 182-96, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23322302

RESUMEN

Inactivation of the retinoblastoma tumor suppressor (pRB) alters the expression of a myriad of genes. To understand the altered cellular environment that these changes create, we took advantage of the Drosophila model system and used targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the metabolic changes that occur when RBF1, the fly ortholog of pRB, is removed. We show that RBF1-depleted tissues and larvae are sensitive to fasting. Depletion of RBF1 causes major changes in nucleotide synthesis and glutathione metabolism. Under fasting conditions, these changes interconnect, and the increased replication demand of RBF1-depleted larvae is associated with the depletion of glutathione pools. In vivo (13)C isotopic tracer analysis shows that RBF1-depleted larvae increase the flux of glutamine toward glutathione synthesis, presumably to minimize oxidative stress. Concordantly, H(2)O(2) preferentially promoted apoptosis in RBF1-depleted tissues, and the sensitivity of RBF1-depleted animals to fasting was specifically suppressed by either a glutamine supplement or the antioxidant N-acetyl-cysteine. Effects of pRB activation/inactivation on glutamine catabolism were also detected in human cell lines. These results show that the inactivation of RB proteins causes metabolic reprogramming and that these consequences of RBF/RB function are present in both flies and human cell lines.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Glutamina/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Daño del ADN , Ayuno/metabolismo , Glutatión/biosíntesis , Humanos , Larva , Mutación , Nucleótidos/biosíntesis , Estrés Oxidativo , Proteína de Retinoblastoma , Estrés Fisiológico
9.
Proc Natl Acad Sci U S A ; 113(7): 1778-83, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831078

RESUMEN

Cancer cells reprogram their metabolism to promote growth and proliferation. The genetic evidence pointing to the importance of the amino acid serine in tumorigenesis is striking. The gene encoding the enzyme 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first committed step of serine biosynthesis, is overexpressed in tumors and cancer cell lines via focal amplification and nuclear factor erythroid-2-related factor 2 (NRF2)-mediated up-regulation. PHGDH-overexpressing cells are exquisitely sensitive to genetic ablation of the pathway. Here, we report the discovery of a selective small molecule inhibitor of PHGDH, CBR-5884, identified by screening a library of 800,000 drug-like compounds. CBR-5884 inhibited de novo serine synthesis in cancer cells and was selectively toxic to cancer cell lines with high serine biosynthetic activity. Biochemical characterization of the inhibitor revealed that it was a noncompetitive inhibitor that showed a time-dependent onset of inhibition and disrupted the oligomerization state of PHGDH. The identification of a small molecule inhibitor of PHGDH not only enables thorough preclinical evaluation of PHGDH as a target in cancers, but also provides a tool with which to study serine metabolism.


Asunto(s)
Neoplasias/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/patología
10.
Genes Dev ; 25(4): 323-35, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325133

RESUMEN

The Hippo signaling pathway regulates organ size homeostasis, while its inactivation leads to severe hyperplasia in flies and mammals. The transcriptional coactivator Yorkie (Yki) mediates transcriptional output of the Hippo signaling. Yki lacks a DNA-binding domain and is recruited to its target promoters as a complex with DNA-binding proteins such as Scalloped (Sd). In spite of recent progress, an open question in the field is the mechanism through which the Yki/Sd transcriptional signature is defined. Here, we report that Yki/Sd synergizes with and requires the transcription factor dE2F1 to induce a specific transcriptional program necessary to bypass the cell cycle exit. We show that Yki/Sd and dE2F1 bind directly to the promoters of the Yki/Sd-dE2F1 shared target genes and activate their expression in a strong cooperative manner. Consistently, RBF, a negative regulator of dE2F1, negates this synergy and limits the overall level of expression of the Yki/Sd-dE2F1 target genes. Significantly, dE2F1 is needed for Yki/Sd-dependent full activation of these target genes, and a de2f1 mutation strongly blocks yki-induced proliferation in vivo. Thus, the Yki transcriptional program is determined through functional interactions with other transcription factors directly at target promoters. We suggest that such functional interactions would influence Yki activity and help diversify the transcriptional output of the Hippo pathway.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/fisiología , Factor de Transcripción E2F1/fisiología , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/genética , Animales , Animales Modificados Genéticamente , Ciclo Celular/fisiología , División Celular/genética , División Celular/fisiología , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
11.
Development ; 138(2): 251-60, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21148181

RESUMEN

archipelago (ago)/Fbw7 encodes a conserved protein that functions as the substrate-receptor component of a polyubiquitin ligase that suppresses tissue growth in flies and tumorigenesis in vertebrates. Ago/Fbw7 targets multiple proteins for degradation, including the G1-S regulator Cyclin E and the oncoprotein dMyc/c-Myc. Despite prominent roles in growth control, little is known about the signals that regulate Ago/Fbw7 abundance in developing tissues. Here we use the Drosophila eye as a model to identify developmental signals that regulate ago expression. We find that expression of ago mRNA and protein is induced by passage of the morphogenetic furrow (MF) and identify the hedgehog (hh) and Notch (N) pathways as elements of this inductive mechanism. Cells mutant for N pathway components, or hh-defective cells that express reduced levels of the Notch ligand Delta, fail to upregulate ago transcription in the region of the MF; reciprocally, ectopic N activation in eye discs induces expression of ago mRNA. A fragment of the ago promoter that contains consensus binding sites for the N pathway transcription factor Su(H) is bound by Su(H) and confers N-inducibility in cultured cells. The failure to upregulate ago in N pathway mutant cells correlates with accumulation of the SCF-Ago target Cyclin E in the area of the MF, and this is rescued by re-expression of ago. These data suggest a model in which N acts through ago to restrict levels of the pro-mitotic factor Cyclin E. This N-Ago-Cyclin E link represents a significant new cell cycle regulatory mechanism in the developing eye.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas F-Box/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Ciclo Celular , Ciclina E/metabolismo , Cartilla de ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/citología , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas Hedgehog/genética , Mutación , Regiones Promotoras Genéticas , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
12.
PLoS Genet ; 6(8): e1001071, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20808898

RESUMEN

Previous studies in Drosophila melanogaster have demonstrated that many tumor suppressor pathways impinge on Rb/E2F to regulate proliferation and survival. Here, we report that Tuberous Sclerosis Complex 1 (TSC1), a well-established tumor suppressor that regulates cell size, is an important regulator of dE2F1 during development. In eye imaginal discs, the loss of tsc1 cooperates with rbf1 mutations to promote ectopic S-phase and cell death. This cooperative effect between tsc1 and rbf1 mutations can be explained, at least in part, by the observation that TSC1 post-transcriptionally regulates dE2F1 expression. Clonal analysis revealed that the protein level of dE2F1 is increased in tsc1 or tsc2 mutant cells and conversely decreased in rheb or dTor mutant cells. Interestingly, while s6k mutations have no effect on dE2F1 expression in the wild-type background, S6k is absolutely required for the increase of dE2F1 expression in tsc2 mutant cells. The canonical TSC/Rheb/Tor/S6k pathway is also an important determinant of dE2F1-dependent cell death, since rheb or s6k mutations suppress the developmentally regulated cell death observed in rbf1 mutant eye discs. Our results provide evidence to suggest that dE2F1 is an important cell cycle regulator that translates the growth-promoting signal downstream of the TSC/Rheb/Tor/S6k pathway.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/metabolismo , Mutación , Proteína de Retinoblastoma , Transducción de Señal
13.
PLoS Genet ; 6(4): e1000918, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421993

RESUMEN

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Retina/metabolismo , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción/genética , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo
14.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606087

RESUMEN

BACKGROUND: Long-term prognosis of WHO grade II, isocitrate dehydrogenase (IDH)-mutated low-grade glioma (LGG) is poor due to high risks of recurrence and malignant transformation into high-grade glioma. Immunotherapy strategies are attractive given the relatively intact immune system of patients with LGG and the slow tumor growth rate. However, accumulation of the oncometabolite D-2-hydroxyglutarate (D-2HG) in IDH-mutated gliomas leads to suppression of inflammatory pathways in the tumor microenvironment, thereby contributing to the 'cold' tumor phenotype. Inhibiting D-2HG production presents an opportunity to generate a robust antitumor response following tumor antigen vaccination and immune checkpoint blockade. METHODS: An IDH1R132H glioma model was created in syngeneic HLA-A2/HLA-DR1-transgenic mice, allowing us to evaluate the vaccination with the human leukocyte antigens (HLA)-DR1-restricted, IDH1R132H mutation-derived neoepitope. The effects of an orally available inhibitor of mutant IDH1 and IDH2, AG-881, were evaluated as monotherapy and in combination with the IDH1R132H peptide vaccination or anti-PD-1 immune checkpoint blockade. RESULTS: The HLA-A2/HLA-DR1-syngeneic IDH1R132H cell line expressed the IDH1 mutant protein and formed D-2HG producing orthotopic gliomas in vivo. Treatment of tumor-bearing mice with AG-881 resulted in a reduction of D-2HG levels in IDH1R132H glioma cells (10 fold) and tumor-associated myeloid cells, which demonstrated high levels of intracellular D-2HG in the IDH1R132H gliomas. AG-881 monotherapy suppressed the progression of IDH1R132H gliomas in a CD4+ and CD8+ cell-dependent manner, enhanced proinflammatory IFNγ-related gene expression, and increased the number of CD4+ tumor-infiltrating T-cells. Prophylactic vaccination with the HLA-DR1-restricted IDH1R132H peptide or tumor-associated HLA-A2-restricted peptides did not enhance survival of tumor-bearing animals; however, vaccination with both HLA-A2-IDH1R132H and DR1-IDH1R132H peptides in combination with the IDH inhibitor significantly prolonged survival. Finally, tumor-bearing mice treated with both AG-881 and a PD-1 blocking antibody demonstrated improved survival when compared with either treatment alone. CONCLUSION: The development of effective IDH1R132H-targeting vaccine may be enhanced by integration with HLA class I-restricted cytotoxic T cell epitopes and AG-881. Our HLA-A2/HLA-DR1-syngeneic IDH1R132H glioma model should allow us to evaluate key translational questions related to the development of novel strategies for patients with IDH-mutant glioma.


Asunto(s)
Vacunas contra el Cáncer , Glioma , Animales , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Glutaratos , Antígeno HLA-A2/genética , Antígeno HLA-DR1/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Isocitrato Deshidrogenasa/genética , Ratones , Ratones Transgénicos , Microambiente Tumoral , Regulación hacia Arriba , Vacunas de Subunidad
15.
Cell Rep ; 40(7): 111182, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977494

RESUMEN

Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Animales , Azacitidina/farmacología , Inhibidores Enzimáticos/farmacología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Mutación/genética , Células Madre/metabolismo
16.
Cancer Discov ; 12(3): 812-835, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848557

RESUMEN

Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma. (R)-2-hydroxyglutarate generated by the mIDH1 enzyme inhibits multiple α-ketoglutarate-dependent enzymes, altering epigenetics and metabolism. Here, by developing mIDH1-driven genetically engineered mouse models, we show that mIDH1 supports cholangiocarcinoma tumor maintenance through an immunoevasion program centered on dual (R)-2-hydroxyglutarate-mediated mechanisms: suppression of CD8+ T-cell activity and tumor cell-autonomous inactivation of TET2 DNA demethylase. Pharmacologic mIDH1 inhibition stimulates CD8+ T-cell recruitment and interferon γ (IFNγ) expression and promotes TET2-dependent induction of IFNγ response genes in tumor cells. CD8+ T-cell depletion or tumor cell-specific ablation of TET2 or IFNγ receptor 1 causes treatment resistance. Whereas immune-checkpoint activation limits mIDH1 inhibitor efficacy, CTLA4 blockade overcomes immunosuppression, providing therapeutic synergy. The findings in this mouse model of cholangiocarcinoma demonstrate that immune function and the IFNγ-TET2 axis are essential for response to mIDH1 inhibition and suggest a novel strategy for potentiating efficacy. SIGNIFICANCE: Mutant IDH1 inhibition stimulates cytotoxic T-cell function and derepression of the DNA demethylating enzyme TET2, which is required for tumor cells to respond to IFNγ. The discovery of mechanisms of treatment efficacy and the identification of synergy by combined CTLA4 blockade provide the foundation for new therapeutic strategies. See related commentary by Zhu and Kwong, p. 604. This article is highlighted in the In This Issue feature, p. 587.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Dioxigenasas , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Antígeno CTLA-4/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Humanos , Interferón gamma/genética , Isocitrato Deshidrogenasa , Ratones , Mutación
17.
PLoS Genet ; 4(10): e1000205, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18833298

RESUMEN

The Hippo pathway negatively regulates the cell number in epithelial tissue. Upon its inactivation, an excess of cells is produced. These additional cells are generated from an increased rate of cell division, followed by inappropriate proliferation of cells that have failed to exit the cell cycle. We analyzed the consequence of inactivation of the entire E2F family of transcription factors in these two settings. In Drosophila, there is a single activator, dE2F1, and a single repressor, dE2F2, which act antagonistically to each other during development. While the loss of the activator dE2F1 results in a severe impairment in cell proliferation, this defect is rescued by the simultaneous loss of the repressor dE2F2, as cell proliferation occurs relatively normally in the absence of both dE2F proteins. We found that the combined inactivation of dE2F1 and dE2F2 had no significant effect on the increased rate of cell division of Hippo pathway mutant cells. In striking contrast, inappropriate proliferation of cells that failed to exit the cell cycle was efficiently blocked. Furthermore, our data suggest that such inappropriate proliferation was primarily dependent on the activator, de2f1, as loss of de2f2 was inconsequential. Consistently, Hippo pathway mutant cells had elevated E2F activity and induced dE2F1 expression at a point when wild-type cells normally exit the cell cycle. Thus, we uncovered a critical requirement for the dE2F family during inappropriate proliferation of Hippo pathway mutant cells.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F2/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factor de Transcripción E2F2/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
18.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251339

RESUMEN

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Cuerpo Adiposo/metabolismo , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Factores de Transcripción E2F/genética , Regulación del Desarrollo de la Expresión Génica , Metabolómica/métodos , Músculos/metabolismo , Fenotipo , Proteómica/métodos , Factores de Transcripción/genética , Transcripción Genética , Trehalosa/metabolismo
19.
Commun Biol ; 4(1): 977, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404904

RESUMEN

Inactivation of RB is one of the hallmarks of cancer, however gaps remain in our understanding of how RB-loss changes human cells. Here we show that pRB-depletion results in cellular reprogramming, we quantitatively measured how RB-depletion altered the transcriptional, proteomic and metabolic output of non-tumorigenic RPE1 human cells. These profiles identified widespread changes in metabolic and cell stress response factors previously linked to E2F function. In addition, we find a number of additional pathways that are sensitive to RB-depletion that are not E2F-regulated that may represent compensatory mechanisms to support the growth of RB-depleted cells. To determine whether these molecular changes are also present in RB1-/- tumors, we compared these results to Retinoblastoma and Small Cell Lung Cancer data, and identified widespread conservation of alterations found in RPE1 cells. To define which of these changes contribute to the growth of cells with de-regulated E2F activity, we assayed how inhibiting or depleting these proteins affected the growth of RB1-/- cells and of Drosophila E2f1-RNAi models in vivo. From this analysis, we identify key metabolic pathways that are essential for the growth of pRB-deleted human cells.


Asunto(s)
Neoplasias de la Retina/fisiopatología , Proteínas de Unión a Retinoblastoma/genética , Retinoblastoma/fisiopatología , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Proteínas de Unión a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
J Med Chem ; 64(14): 10333-10349, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34196551

RESUMEN

Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Modelos Moleculares , Estructura Molecular , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA