Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(5): 1178-87, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267896

RESUMEN

There are few substantive methods to measure the health of the immune system, and the connection between immune strength and the viral component of the microbiome is poorly understood. Organ transplant recipients are treated with posttransplant therapies that combine immunosuppressive and antiviral drugs, offering a window into the effects of immune modulation on the virome. We used sequencing of cell-free DNA in plasma to investigate drug-virome interactions in a cohort of organ transplant recipients (656 samples, 96 patients) and find that antivirals and immunosuppressants strongly affect the structure of the virome in plasma. We observe marked virome compositional dynamics at the onset of the therapy and find that the total viral load increases with immunosuppression, whereas the bacterial component of the microbiome remains largely unaffected. The data provide insight into the relationship between the human virome, the state of the immune system, and the effects of pharmacological treatment and offer a potential application of the virome state to predict immunocompetence.


Asunto(s)
Antivirales/uso terapéutico , Sangre/virología , Trasplante de Corazón , Inmunosupresores/uso terapéutico , Trasplante de Pulmón , Virus/aislamiento & purificación , Adulto , Profilaxis Antibiótica , Sangre/microbiología , Niño , ADN/sangre , ADN/genética , Humanos , Virus/clasificación
2.
Circ Res ; 135(1): 41-56, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712557

RESUMEN

BACKGROUND: Inflammation is pathogenically implicated in pulmonary arterial hypertension; however, it has not been adequately targeted therapeutically. We investigated whether neuromodulation of an anti-inflammatory neuroimmune pathway involving the splenic nerve using noninvasive, focused ultrasound stimulation of the spleen (sFUS) can improve experimental pulmonary hypertension. METHODS: Pulmonary hypertension was induced in rats either by Sugen 5416 (20 mg/kg SQ) injection, followed by 21 (or 35) days of hypoxia (sugen/hypoxia model), or by monocrotaline (60 mg/kg IP) injection (monocrotaline model). Animals were randomized to receive either 12-minute-long sessions of sFUS daily or sham stimulation for 14 days. Catheterizations, echocardiography, indices of autonomic function, lung and heart histology and immunohistochemistry, spleen flow cytometry, and lung single-cell RNA sequencing were performed after treatment to assess the effects of sFUS. RESULTS: Splenic denervation right before induction of pulmonary hypertension results in a more severe disease phenotype. In both sugen/hypoxia and monocrotaline models, sFUS treatment reduces right ventricular systolic pressure by 25% to 30% compared with sham treatment, without affecting systemic pressure, and improves right ventricular function and autonomic indices. sFUS reduces wall thickness, apoptosis, and proliferation in small pulmonary arterioles, suppresses CD3+ and CD68+ cell infiltration in lungs and right ventricular fibrosis and hypertrophy and lowers BNP (brain natriuretic peptide). Beneficial effects persist for weeks after sFUS discontinuation and are more robust with early and longer treatment. Splenic denervation abolishes sFUS therapeutic benefits. sFUS partially normalizes CD68+ and CD8+ T-cell counts in the spleen and downregulates several inflammatory genes and pathways in nonclassical and classical monocytes and macrophages in the lung. Differentially expressed genes in those cell types are significantly enriched for human pulmonary arterial hypertension-associated genes. CONCLUSIONS: sFUS causes dose-dependent, sustained improvement of hemodynamic, autonomic, laboratory, and pathological manifestations in 2 models of experimental pulmonary hypertension. Mechanistically, sFUS normalizes immune cell populations in the spleen and downregulates inflammatory genes and pathways in the lung, many of which are relevant in human disease.


Asunto(s)
Hipertensión Pulmonar , Bazo , Animales , Bazo/metabolismo , Masculino , Ratas , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Ondas Ultrasónicas
3.
Circ Res ; 135(1): 60-75, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770652

RESUMEN

BACKGROUND: Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS: Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS: Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS: 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.


Asunto(s)
Hipertensión Pulmonar , Imagenología Tridimensional , Ratones Endogámicos C57BL , Animales , Humanos , Ratones , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Microvasos/fisiopatología , Microvasos/diagnóstico por imagen , Microvasos/patología , Remodelación Vascular , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha , Remodelación Ventricular , Modelos Animales de Enfermedad , Miocitos Cardíacos/patología
4.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243138

RESUMEN

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Pulmón
5.
Am J Respir Crit Care Med ; 209(2): 206-218, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934691

RESUMEN

Rationale: Unraveling immune-driven vascular pathology in pulmonary arterial hypertension (PAH) requires a comprehensive understanding of the immune cell landscape. Although patients with hereditary (H)PAH and bone morphogenetic protein receptor type 2 (BMPR2) mutations have more severe pulmonary vascular pathology, it is not known whether this is related to specific immune cell subsets. Objectives: This study aims to elucidate immune-driven vascular pathology by identifying immune cell subtypes linked to severity of pulmonary arterial lesions in PAH. Methods: We used cutting-edge multiplexed ion beam imaging by time of flight to compare pulmonary arteries (PAs) and adjacent tissue in PAH lungs (idiopathic [I]PAH and HPAH) with unused donor lungs, as controls. Measurements and Main Results: We quantified immune cells' proximity and abundance, focusing on those features linked to vascular pathology, and evaluated their impact on pulmonary arterial smooth muscle cells (SMCs) and endothelial cells. Distinct immune infiltration patterns emerged between PAH subtypes, with intramural involvement independently linked to PA occlusive changes. Notably, we identified monocyte-derived dendritic cells within PA subendothelial and adventitial regions, influencing vascular remodeling by promoting SMC proliferation and suppressing endothelial gene expression across PAH subtypes. In patients with HPAH, pronounced immune dysregulation encircled PA walls, characterized by heightened perivascular inflammation involving T cell immunoglobulin and mucin domain-3 (TIM-3)+ T cells. This correlated with an expanded DC subset expressing indoleamine 2,3-dioxygenase 1, TIM-3, and SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1, alongside increased neutrophils, SMCs, and alpha-smooth muscle actin (ACTA2)+ endothelial cells, reinforcing the heightened severity of pulmonary vascular lesions. Conclusions: This study presents the first architectural map of PAH lungs, connecting immune subsets not only with specific PA lesions but also with heightened severity in HPAH compared with IPAH. Our findings emphasize the therapeutic potential of targeting monocyte-derived dendritic cells, neutrophils, cellular interactions, and immune responses to alleviate severe vascular pathology in IPAH and HPAH.


Asunto(s)
Hidralazina/análogos & derivados , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/genética , Arteria Pulmonar , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proliferación Celular , Hidrazonas
6.
Eur Respir J ; 63(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485150

RESUMEN

There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.


Asunto(s)
Linfocitos B , Hipertensión Arterial Pulmonar , Humanos , Linfocitos B/inmunología , Hipertensión Arterial Pulmonar/inmunología , Animales , Pulmón/inmunología , Autoanticuerpos/inmunología , Hipertensión Pulmonar/inmunología
7.
Am J Respir Cell Mol Biol ; 68(3): 245-255, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476129

RESUMEN

Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.


Asunto(s)
Asma , Fibrosis Quística , Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/microbiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Fibrosis Quística/microbiología
8.
Clin Infect Dis ; 77(2): 186-193, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-36996150

RESUMEN

BACKGROUND: The vast majority of coronavirus disease 2019 (COVID-19) disease occurs in outpatients where treatment is limited to antivirals for high-risk subgroups. Acebilustat, a leukotriene B4 inhibitor, has potential to reduce inflammation and symptom duration. METHODS: In a single-center trial spanning Delta and Omicron variants, outpatients were randomized to 100 mg/d of oral acebilustat or placebo for 28 days. Patients reported daily symptoms via electronic query through day 28 with phone follow-up on day 120 and collected nasal swab samples on days 1-10. The primary outcome was sustained symptom resolution to day 28. Secondary 28-day outcomes included time to first symptom resolution, area under the curve (AUC) for longitudinal daily symptom scores, duration of viral shedding through day 10, and symptoms on day 120. RESULTS: Sixty participants were randomized to each study arm. At enrollment, the median duration was 4 days (interquartile range, 3-5 days), and the median number of symptoms was 9 (7-11). Most patients (90%) were vaccinated, with 73% having neutralizing antibodies. A minority of participants (44%; 35% in the acebilustat arm and 53% in placebo) had sustained symptom resolution at day 28 (hazard ratio, 0.6 [95% confidence interval, .34-1.04]; P = .07 favoring placebo). There was no difference in the mean AUC for symptom scores over 28 days (difference in mean AUC, 9.4 [95% confidence interval, -42.1 to 60.9]; P = .72). Acebilustat did not affect viral shedding or symptoms at day 120. CONCLUSIONS: Sustained symptoms through day 28 were common in this low-risk population. Despite this, leukotriene B4 antagonism with acebilustat did not shorten symptom duration in outpatients with COVID-19. Clinical Trials Registration. NCT04662060.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Leucotrieno B4 , Pacientes Ambulatorios , Método Doble Ciego , Resultado del Tratamiento
9.
Am J Respir Crit Care Med ; 206(8): 1019-1034, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35696338

RESUMEN

Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated ß1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.


Asunto(s)
Retrovirus Endógenos , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Antivirales , Elafina/genética , Elafina/metabolismo , Elafina/farmacología , Retrovirus Endógenos/metabolismo , Hipertensión Pulmonar Primaria Familiar/genética , Humanos , Hipertensión Pulmonar/genética , Integrinas/genética , Integrinas/metabolismo , Elastasa de Leucocito/metabolismo , Ratones , Neutrófilos/metabolismo , Proteómica , Vinculina/genética , Vinculina/metabolismo
10.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35680145

RESUMEN

Circular RNAs (circRNAs) are endogenous, covalently circularised, non-protein-coding RNAs generated from back-splicing. Most circRNAs are very stable, highly conserved, and expressed in a tissue-, cell- and developmental stage-specific manner. circRNAs play a significant role in various biological processes, such as regulation of gene expression and protein translation via sponging of microRNAs and binding with RNA-binding proteins. circRNAs have become a topic of great interest in research due to their close link with the development of various diseases. Their high stability, conservation and abundance in body fluids make them promising biomarkers for many diseases. A growing body of evidence suggests that aberrant expression of circRNAs and their targets plays a crucial role in pulmonary vascular remodelling and pulmonary arterial hypertension (group 1) as well as other forms (groups 3 and 4) of pulmonary hypertension (PH). Here we discuss the roles and molecular mechanisms of circRNAs in the pathogenesis of pulmonary vascular remodelling and PH. We also highlight the therapeutic and biomarker potential of circRNAs in PH.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Humanos , ARN Circular/genética , Hipertensión Pulmonar/genética , Remodelación Vascular/genética , MicroARNs/genética , Biomarcadores/metabolismo
11.
Am J Respir Crit Care Med ; 204(2): 209-221, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33651671

RESUMEN

Rationale: Systemic sclerosis (SSc)-pulmonary arterial hypertension (PAH) is one of the most prevalent and deadly forms of PAH. B cells may contribute to SSc pathogenesis. Objectives: We investigated the safety and efficacy of B-cell depletion for SSc-PAH. Methods: In an NIH-sponsored, multicenter, double-blinded, randomized, placebo-controlled, proof-of-concept trial, 57 patients with SSc-PAH on stable-dose standard medical therapy received two infusions of 1,000 mg rituximab or placebo administered 2 weeks apart. The primary outcome measure was the change in 6-minute-walk distance (6MWD) at 24 weeks. Secondary endpoints included safety and invasive hemodynamics. We applied a machine learning approach to predict drug responsiveness. Measurements and Main Results: We randomized 57 subjects from 2010 to 2018. In the primary analysis, using data through Week 24, the adjusted mean change in 6MWD at 24 weeks favored the treatment arm but did not reach statistical significance (23.6 ± 11.1 m vs. 0.5 ± 9.7 m; P = 0.12). Although a negative study, when data through Week 48 were also considered, the estimated change in 6MWD at Week 24 was 25.5 ± 8.8 m for rituximab and 0.4 ± 7.4 m for placebo (P = 0.03). Rituximab treatment appeared to be safe and well tolerated. Low levels of RF (rheumatoid factor), IL-12, and IL-17 were sensitive and specific as favorable predictors of a rituximab response as measured by an improved 6MWD (receiver operating characteristic area under the curve, 0.88-0.95). Conclusions: B-cell depletion therapy is a potentially effective and safe adjuvant treatment for SSc-PAH. Future studies in these patients can confirm whether the identified biomarkers predict rituximab responsiveness. Clinical trial registered with www.clinicaltrails.gov (NCT01086540).


Asunto(s)
Linfocitos B/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/etiología , Rituximab/uso terapéutico , Esclerodermia Sistémica/complicaciones , Adolescente , Adulto , Anciano , Biomarcadores Farmacológicos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Am J Respir Crit Care Med ; 203(12): 1472-1487, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33861689

RESUMEN

The diagnosis and management of pulmonary arterial hypertension (PAH) includes several advances, such as a broader recognition of extrapulmonary vascular organ system involvement, validated point-of-care clinical assessment tools, and focus on the early initiation of multiple pharmacotherapeutics in appropriate patients. Indeed, a principal goal in PAH today is an early diagnosis for prompt initiation of treatment to achieve a minimal symptom burden; optimize the patient's biochemical, hemodynamic, and functional profile; and limit adverse events. To accomplish this end, clinicians must be familiar with novel risk factors and the revised hemodynamic definition for PAH. Fresh insights into the role of developmental biology (i.e., perinatal health) may also be useful for predicting incident PAH in early adulthood. Emergent or underused approaches to PAH management include a novel TGF-ß ligand trap pharmacotherapy, remote pulmonary arterial pressure monitoring, next-generation imaging using inert gas-based magnetic resonance and other technologies, right atrial pacing, and pulmonary arterial denervation. These and other PAH state of the art advances are summarized here for the wider pulmonary medicine community.


Asunto(s)
Cateterismo Cardíaco/métodos , Procedimientos Quirúrgicos Cardíacos/métodos , Diagnóstico Precoz , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/terapia , Terapias en Investigación/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
13.
Annu Rev Physiol ; 80: 49-70, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29029593

RESUMEN

The lymphatic system is essential for the maintenance of tissue fluid homeostasis, gastrointestinal lipid absorption, and immune trafficking. Whereas lymphatic regeneration occurs physiologically in wound healing and tissue repair, pathological lymphangiogenesis has been implicated in a number of chronic diseases such as lymphedema, atherosclerosis, and cancer. Insight into the regulatory mechanisms of lymphangiogenesis and the manner in which uncontrolled inflammation promotes lymphatic dysfunction is urgently needed to guide the development of novel therapeutics: These would be designed to reverse lymphatic dysfunction, either primary or acquired. Recent investigation has demonstrated the mechanistic role of leukotriene B4 (LTB4) in the molecular pathogenesis of lymphedema. LTB4, a product of the innate immune response, is a constituent of the eicosanoid inflammatory mediator family of molecules that promote both physiological and pathological inflammation. Here we provide an overview of lymphatic development, the pathophysiology of lymphedema, and the role of leukotrienes in lymphedema pathogenesis.


Asunto(s)
Leucotrienos/metabolismo , Sistema Linfático/fisiopatología , Linfedema/fisiopatología , Animales , Humanos , Inflamación/patología , Sistema Linfático/metabolismo , Sistema Linfático/patología , Linfedema/metabolismo , Linfedema/patología
14.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L416-L428, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34189964

RESUMEN

Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown previously that insulin receptor substrate 2 (IRS2), a molecule highly critical to insulin resistance and metabolism, has an anti-inflammatory role in Th2-skewed lung inflammation and pulmonary vascular remodeling. Here, we investigated the hypothesis that IRS2 has an immunomodulatory role in human and experimental PH. Expression analysis showed that IRS2 was significantly decreased in the pulmonary vasculature of patients with pulmonary arterial hypertension and in rat models of PH. In mice, genetic ablation of IRS2 enhanced the hypoxia-induced signaling pathway of Akt and Forkhead box O1 (FOXO1) in the lung tissue and increased pulmonary vascular muscularization, proliferation, and perivascular macrophage recruitment. Furthermore, mice with homozygous IRS2 gene deletion showed a significant gene dosage-dependent increase in pulmonary vascular remodeling and right ventricular hypertrophy in response to hypoxia. Functional studies with bone marrow-derived macrophages isolated from homozygous IRS2 gene-deleted mice showed that hypoxia exposure led to enhancement of the Akt and ERK signaling pathway followed by increases in the pro-PH macrophage activation markers, vascular endothelial growth factor-A and arginase 1. Our data suggest that IRS2 contributes to anti-inflammatory effects by regulating macrophage activation and recruitment, which may limit the vascular inflammation, remodeling, and right ventricular hypertrophy that are seen in PH pathology. Restoring the IRS2 pathway may be an effective therapeutic approach for the treatment of PH and right heart failure.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Remodelación Vascular , Animales , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/genética , Hipoxia/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Desnudas
15.
Circ Res ; 124(6): 904-919, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661465

RESUMEN

RATIONALE: Accumulating evidence implicates inflammation in pulmonary arterial hypertension (PAH) and therapies targeting immunity are under investigation, although it remains unknown if distinct immune phenotypes exist. OBJECTIVE: Identify PAH immune phenotypes based on unsupervised analysis of blood proteomic profiles. METHODS AND RESULTS: In a prospective observational study of group 1 PAH patients evaluated at Stanford University (discovery cohort; n=281) and University of Sheffield (validation cohort; n=104) between 2008 and 2014, we measured a circulating proteomic panel of 48 cytokines, chemokines, and factors using multiplex immunoassay. Unsupervised machine learning (consensus clustering) was applied in both cohorts independently to classify patients into proteomic immune clusters, without guidance from clinical features. To identify central proteins in each cluster, we performed partial correlation network analysis. Clinical characteristics and outcomes were subsequently compared across clusters. Four PAH clusters with distinct proteomic immune profiles were identified in the discovery cohort. Cluster 2 (n=109) had low cytokine levels similar to controls. Other clusters had unique sets of upregulated proteins central to immune networks-cluster 1 (n=58; TRAIL [tumor necrosis factor-related apoptosis-inducing ligand], CCL5 [C-C motif chemokine ligand 5], CCL7, CCL4, MIF [macrophage migration inhibitory factor]), cluster 3 (n=77; IL [interleukin]-12, IL-17, IL-10, IL-7, VEGF [vascular endothelial growth factor]), and cluster 4 (n=37; IL-8, IL-4, PDGF-ß [platelet-derived growth factor beta], IL-6, CCL11). Demographics, PAH clinical subtypes, comorbidities, and medications were similar across clusters. Noninvasive and hemodynamic surrogates of clinical risk identified cluster 1 as high-risk and cluster 3 as low-risk groups. Five-year transplant-free survival rates were unfavorable for cluster 1 (47.6%; 95% CI, 35.4%-64.1%) and favorable for cluster 3 (82.4%; 95% CI, 72.0%-94.3%; across-cluster P<0.001). Findings were replicated in the validation cohort, where machine learning classified 4 immune clusters with comparable proteomic, clinical, and prognostic features. CONCLUSIONS: Blood cytokine profiles distinguish PAH immune phenotypes with differing clinical risk that are independent of World Health Organization group 1 subtypes. These phenotypes could inform mechanistic studies of disease pathobiology and provide a framework to examine patient responses to emerging therapies targeting immunity.


Asunto(s)
Aprendizaje Automático , Hipertensión Arterial Pulmonar/inmunología , Adulto , Anciano , Estudios de Cohortes , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Proteómica , Hipertensión Arterial Pulmonar/mortalidad
16.
Am J Respir Crit Care Med ; 202(7): 983-995, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32515984

RESUMEN

Rationale: Endothelial injury may provoke emphysema, but molecular pathways of disease development require further discernment. Emphysematous lungs exhibit decreased expression of HIF-2α (hypoxia-inducible factor-2α)-regulated genes, and tobacco smoke decreases pulmonary HIF-2α concentrations. These findings suggest that decreased HIF-2α expression is important in the development of emphysema.Objectives: The objective of this study was to evaluate the roles of endothelial-cell (EC) HIF-2α in the pathogenesis of emphysema in mice.Methods: Mouse lungs were examined for emphysema after either the loss or the overexpression of EC Hif-2α. In addition, SU5416, a VEGFR2 inhibitor, was used to induce emphysema. Lungs were evaluated for HGF (hepatocyte growth factor), a protein involved in alveolar development and homeostasis. Lungs from patients with emphysema were measured for endothelial HIF-2α expression.Measurements and Main Results: EC Hif-2α deletion resulted in emphysema in association with fewer ECs and pericytes. After SU5416 exposure, EC Hif-2α-knockout mice developed more severe emphysema, whereas EC Hif-2α-overexpressing mice were protected. EC Hif-2α-knockout mice demonstrated lower levels of HGF. Human emphysema lung samples exhibited reduced EC HIF-2α expression.Conclusions: Here, we demonstrate a unique protective role for pulmonary endothelial HIF-2α and how decreased expression of this endogenous factor causes emphysema; its pivotal protective function is suggested by its ability to overcome VEGF antagonism. HIF-2α may maintain alveolar architecture by promoting vascular survival and associated HGF production. In summary, HIF-2α may be a key endogenous factor that prevents the development of emphysema, and its upregulation has the potential to foster lung health in at-risk patients.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Pulmón/metabolismo , Enfisema Pulmonar/genética , Inhibidores de la Angiogénesis/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Deferoxamina/farmacología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Indoles/toxicidad , Quelantes del Hierro/farmacología , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/efectos de los fármacos , Ratones , Ratones Noqueados , Microvasos , Pericitos/metabolismo , Circulación Pulmonar , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Pirroles/toxicidad , Humo/efectos adversos
17.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923272

RESUMEN

The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.


Asunto(s)
Modelos Animales de Enfermedad , Leucina/análogos & derivados , Leucocitos/inmunología , Leucotrieno B4/antagonistas & inhibidores , Ganglios Linfáticos/inmunología , Vasos Linfáticos/inmunología , Linfedema/inmunología , Animales , Femenino , Cinética , Leucina/farmacología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Linfedema/tratamiento farmacológico , Linfedema/metabolismo , Linfedema/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteasas/farmacología
18.
Am J Respir Cell Mol Biol ; 62(6): 747-759, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32084325

RESUMEN

Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.


Asunto(s)
Quimiocina CXCL12/fisiología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Animales , Antígenos/análisis , Bencilaminas , División Celular , Linaje de la Célula , Quimiocina CXCL12/genética , Enfermedad Crónica , Ciclamas , ADN Nucleotidilexotransferasa/análisis , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/prevención & control , Hipoxia/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteoglicanos/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores CXCR4/antagonistas & inhibidores , Proteínas Recombinantes/farmacología , Transducción de Señal , Vasoconstricción
19.
Circulation ; 139(4): 502-517, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30586708

RESUMEN

BACKGROUND: Hypoxia-inducible factors (HIFs), especially HIF-1α and HIF-2α, are key mediators of the adaptive response to hypoxic stress and play essential roles in maintaining lung homeostasis. Human and animal genetics studies confirm that abnormal HIF correlates with pulmonary vascular pathology and chronic lung diseases, but it remains unclear whether endothelial cell HIF production is essential for microvascular health. The large airway has an ideal circulatory bed for evaluating histological changes and physiology in genetically modified rodents. METHODS: The tracheal microvasculature of mice, with conditionally deleted or overexpressed HIF-1α or HIF-2α, was evaluated for anatomy, perfusion, and permeability. Angiogenic signaling studies assessed vascular changes attributable to dysregulated HIF expression. An orthotopic tracheal transplantation model further evaluated the contribution of individual HIF isoforms in airway endothelial cells. RESULTS: The genetic deletion of Hif-2α but not Hif-1α caused tracheal endothelial cell apoptosis, diminished pericyte coverage, reduced vascular perfusion, defective barrier function, overlying epithelial abnormalities, and subepithelial fibrotic remodeling. HIF-2α promoted microvascular integrity in airways through endothelial angiopoietin-1/TIE2 signaling and Notch activity. In functional tracheal transplants, HIF-2α deficiency in airway donors accelerated graft microvascular loss, whereas HIF-2α or angiopoietin-1 overexpression prolonged transplant microvascular perfusion. Augmented endothelial HIF-2α in transplant donors promoted airway microvascular integrity and diminished alloimmune inflammation. CONCLUSIONS: Our findings reveal that the constitutive expression of endothelial HIF-2α is required for airway microvascular health.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Endoteliales/metabolismo , Microvasos/metabolismo , Tráquea/irrigación sanguínea , Angiopoyetina 1/metabolismo , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Células Endoteliales/patología , Células Endoteliales/trasplante , Femenino , Supervivencia de Injerto , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , Microvasos/trasplante , Neovascularización Fisiológica , Receptor TIE-2/metabolismo , Transducción de Señal , Tráquea/trasplante
20.
Circulation ; 139(14): 1710-1724, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30586764

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS: Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS: Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS: We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Pericitos/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Proteína Wnt-5a/deficiencia , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Hipoxia de la Célula , Polaridad Celular , Células Cultivadas , Niño , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Exosomas/metabolismo , Exosomas/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Patológica , Comunicación Paracrina , Pericitos/patología , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Ratas , Vía de Señalización Wnt , Proteína Wnt-5a/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA