Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007418

RESUMEN

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Asunto(s)
Encéfalo/metabolismo , Técnicas de Inactivación de Genes/métodos , Genes Reporteros , Animales , Encéfalo/citología , Calcio/metabolismo , Línea Celular , Hibridación Fluorescente in Situ , Luz , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Optogenética , ARN no Traducido/genética , Transgenes/genética
2.
Nature ; 598(7879): 111-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616062

RESUMEN

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Asunto(s)
Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Animales , Atlas como Asunto , Callithrix/genética , Epigénesis Genética , Epigenómica , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Filogenia , Especificidad de la Especie , Transcriptoma
3.
Nat Methods ; 19(5): 613-619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545715

RESUMEN

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Asunto(s)
Microscopía , Animales , Ratones , Microscopía/métodos
4.
Nat Methods ; 18(8): 937-944, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34226720

RESUMEN

Fluorescence in situ hybridization (FISH) allows researchers to visualize the spatial position and quantity of nucleic acids in fixed samples. Recently, considerable progress has been made in developing oligonucleotide (oligo)-based FISH methods that have enabled researchers to study the three-dimensional organization of the genome at super-resolution and visualize the spatial patterns of gene expression for thousands of genes in individual cells. However, there are few existing computational tools to support the bioinformatics workflows necessary to carry out these experiments using oligo FISH probes. Here, we introduce paint server and homology optimization pipeline (PaintSHOP), an interactive platform for the design of oligo FISH experiments. PaintSHOP enables researchers to identify probes for their experimental targets efficiently, to incorporate additional necessary sequences such as primer pairs and to easily generate files documenting library design. PaintSHOP democratizes and standardizes the process of designing complex probe sets for the oligo FISH community.


Asunto(s)
Pintura Cromosómica/métodos , Biología Computacional/métodos , Genoma Humano , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/química , Secuencias Repetitivas de Ácidos Nucleicos , Transcriptoma , Humanos
6.
Opt Express ; 29(15): 24349-24362, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614682

RESUMEN

Fluorescence microscopy benefits from spatially and temporally homogeneous illumination with the illumination area matched to the shape and size of the camera sensor. Fiber-coupled illumination schemes have the added benefit of straightforward and robust alignment and ease of installation compared to free-space coupled illumination. Commercial and open-source fiber-coupled, homogenized illumination schemes have recently become available to the public; however, there have been no published comparisons of speckle reduction schemes to date. We characterize three different multimode fibers in combination with two laser speckle reduction devices and compare spatial and temporal profiles to a commercial unit. This work yields a new design, the EvenField Illuminator, which is freely available for researchers to integrate into their own imaging systems.

8.
Proc Natl Acad Sci U S A ; 113(37): E5454-63, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27573839

RESUMEN

Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR-CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR-CD3 complexes. We found that only TCR-CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR-pMHC affinity determined the density of TCR-CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR-CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.


Asunto(s)
Antígenos/inmunología , Complejo CD3/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Inmunidad Adaptativa/genética , Animales , Antígenos/genética , Humanos , Ratones , Péptidos/inmunología , Fosforilación/inmunología , Transducción de Señal , Imagen Individual de Molécula
9.
Biophys J ; 114(12): 2855-2864, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925022

RESUMEN

The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Animales , Benzoxazinas/química , Células COS , Supervivencia Celular , Chlorocebus aethiops , Compuestos de Amonio Cuaternario/química , Espectrometría de Fluorescencia
10.
J Evol Biol ; 31(12): 1894-1902, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30267554

RESUMEN

Nutrient availability has been shown to influence investment in many fitness-related traits, including male reproductive success. Many studies have demonstrated that a reduction in nutrient availability alters male post-copulatory trait expression, with some studies demonstrating an effect of developmental nutrients and others, an effect of adult nutrients. However, few studies have manipulated both developmental and adult nutrients in the same experiment. Therefore, it is not clear what life-stage has the greatest effect on post-copulatory trait expression, and if the effects of developmental and adult nutrients can interact. Here, we investigate effects of developmental and adult nutrition on male testes and accessory gland size, sperm movement within the female reproductive tract and sperm length in the neriid fly, Telostylinus angusticollis. We found that males fed a nutrient-poor developmental diet produced sperm with a reduced tail beat frequency and had smaller testes and accessory glands compared to males fed a nutrient-rich developmental diet. In contrast, we found no effects of adult nutrition on any traits measured, although sperm length was correlated with body size and male age but unaffected by nutrition at any stage. Therefore, investment in adult post-copulatory traits is determined early on by developmental nutrients in male neriid flies, and this effect is not altered by adult nutrient availability.


Asunto(s)
Dieta , Dípteros/fisiología , Conducta Sexual Animal , Alimentación Animal , Animales , Copulación , Femenino , Masculino
11.
Langmuir ; 34(34): 10012-10018, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30067032

RESUMEN

Single-molecule localization microscopy (SMLM) has created the opportunity of pushing fluorescence microscopy from being a biological imaging tool to a surface characterization and possibly even a quantitative analytical tool. The latter could be achieved by molecular counting using pointillist SMLM data sets. However, SMLM is especially sensitive to background fluorescent signals, which influences any subsequent analysis. Therefore, fabricating sensing surfaces that resist nonspecific adsorption of proteins, even after multiple modification steps, has become paramount. Herein is reported two different ways to modify surfaces: dichlorodimethylsilane-biotinylated bovine serum albumin-Tween-20 (DbT20) and poly-l-lysine grafted polyethylene glycol (PLL-PEG) mixed with biotinylated PLL-PEG (PLL-PEG/PEGbiotin). The results show that the ability to resist nonspecific adsorption of DbT20 surfaces deteriorates with an increase in the number of modification steps required after the addition of the DbT20, which limits the applicability of this surface for SMLM. As such, a new surface for SMLM that employs PLL-PEG/PEGbiotin was developed that exhibits ultralow amounts of nonspecific protein adsorption even after many modification steps. The utility of the surface was demonstrated for human influenza hemagglutinin-tagged mEos2, which was directly pulled down from cell lysates onto the PLL-PEG/PEGbiotin surface. The results strongly indicated that the PLL-PEG/PEGbiotin surface satisfies the criteria of SMLM imaging of a negligible background signal and negligible nonspecific adsorption.

12.
Microsc Microanal ; 21(1): 256-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25640702

RESUMEN

The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.


Asunto(s)
Motilidad Espermática , Espermatozoides/citología , Animales , Dípteros , Femenino , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía por Video , Reproducción , Espermatozoides/química
13.
Proc Natl Acad Sci U S A ; 108(12): 5057-62, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383151

RESUMEN

Neurons in the central nervous system (CNS) fail to regenerate axons after injuries due to the diminished intrinsic axon growth capacity of mature neurons and the hostile extrinsic environment composed of a milieu of inhibitory factors. Recent studies revealed that targeting a particular group of extracellular inhibitory factors is insufficient to trigger long-distance axon regeneration. Instead of antagonizing the growing list of impediments, tackling a common target that mediates axon growth inhibition offers an alternative strategy to promote axon regeneration. Neuronal growth cone, the machinery that derives axon extension, is the final converging target of most, if not all, growth impediments in the CNS. In this study, we aim to promote axon growth by directly targeting the growth cone. Here we report that pharmacological inhibition or genetic silencing of nonmuscle myosin II (NMII) markedly accelerates axon growth over permissive and nonpermissive substrates, including major CNS inhibitors such as chondroitin sulfate proteoglycans and myelin-associated inhibitors. We find that NMII inhibition leads to the reorganization of both actin and microtubules (MTs) in the growth cone, resulting in MT reorganization that allows rapid axon extension over inhibitory substrates. In addition to enhancing axon extension, we show that local blockade of NMII activity in axons is sufficient to trigger axons to grow across the permissive-inhibitory border. Together, our study proposes NMII and growth cone cytoskeletal components as effective targets for promoting axon regeneration.


Asunto(s)
Axones/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/biosíntesis , Regeneración/fisiología , Animales , Silenciador del Gen , Ratones , Microtúbulos/genética , Miosina Tipo II/genética , Ingeniería de Tejidos
14.
Biomolecules ; 14(10)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39456172

RESUMEN

Tropomyosins (Tpms) are rod-shaped proteins that interact head-to-tail to form a continuous polymer along both sides of most cellular actin filaments. Head-to-tail interaction between adjacent Tpm molecules and the formation of an overlap complex between them leads to the assembly of actin filaments with one type of Tpm isoform in time and space. Variations in the affinity of tropomyosin isoforms for different actin structures are proposed as a potential sorting mechanism. However, the detailed mechanisms of the spatio-temporal sorting of Tpms remain elusive. In this study, we investigated the early intermediates during actin-tropomyosin filament assembly, using a skeletal/cardiac Tpm isoform (Tpm1.1) and a cytoskeletal isoform (Tpm1.6) that differ only in the last 27 amino acids. We investigated how the muscle isoform Tpm1.1 and the cytoskeletal isoform Tpm1.6 nucleate domains on the actin filament, and tested whether (1) recruitment is affected by the actin isoform (muscle vs. cytoskeletal) and (2) whether there is specificity in recruiting the same isoform to a domain at these early stages. To address these questions, actin filaments were exposed to low concentrations of fluorescent tropomyosins in solution. The filaments were immobilized onto glass coverslips and the pattern of decoration was visualized by TIRF microscopy. We show that at the early assembly stage, tropomyosins formed multiple distinct fluorescent domains (here termed "cluster") on the actin filaments. An automated image analysis algorithm was developed and validated to identify clusters and estimate the number of tropomyosins in each cluster. The analysis showed that tropomyosin isoform sorting onto an actin filament is unlikely to be driven by a preference for nucleating on the corresponding muscle or cytoskeletal actin isoforms, but rather is facilitated by a higher probability of incorporating the same tropomyosin isoforms into an early assembly intermediate. We showed that the 27 amino acids at the end of each tropomyosin seem to provide enough molecular information for the attachment of the same tropomyosin isoforms adjacent to each other on an actin filament. This results in the formation of homogeneous clusters composed of the same isoform rather than clusters with mixed isoforms.


Asunto(s)
Citoesqueleto de Actina , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Animales , Actinas/metabolismo , Actinas/química
15.
Elife ; 122023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249212

RESUMEN

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.


Asunto(s)
Neocórtex , Humanos , Neocórtex/fisiología , Transmisión Sináptica/fisiología , Hibridación Fluorescente in Situ , Estudios Prospectivos , Neuronas/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Interneuronas/fisiología
16.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550293

RESUMEN

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Asunto(s)
Conectoma , Corteza Visual , Ratones , Animales , Neuronas/fisiología , Encéfalo/fisiología , Corteza Visual/fisiología , Vías Visuales
18.
Biomed Opt Express ; 13(2): 1102-1120, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284165

RESUMEN

Confocal microscopy is an invaluable tool for 3D imaging of biological specimens, however, accessibility is often limited to core facilities due to the high cost of the hardware. We describe an inexpensive do-it-yourself (DIY) spinning disk confocal microscope (SDCM) module based on a commercially fabricated chromium photomask that can be added on to a laser-illuminated epifluorescence microscope. The SDCM achieves strong performance across a wide wavelength range (∼400-800 nm) as demonstrated through a series of biological imaging applications that include conventional microscopy (immunofluorescence, small-molecule stains, and fluorescence in situ hybridization) and super-resolution microscopy (single-molecule localization microscopy and expansion microscopy). This low-cost and simple DIY SDCM is well-documented and should help increase accessibility to confocal microscopy for researchers.

19.
Science ; 375(6585): eabj5861, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271334

RESUMEN

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Asunto(s)
Neocórtex/fisiología , Vías Nerviosas , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Adulto , Animales , Conjuntos de Datos como Asunto , Potenciales Postsinápticos Excitadores , Femenino , Humanos , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Transgénicos , Modelos Neurológicos , Neocórtex/citología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Corteza Visual/citología , Corteza Visual/fisiología
20.
Mol Biol Cell ; 32(9): 892-902, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33534630

RESUMEN

Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Transporte de Proteínas/fisiología , Vesículas Transportadoras/fisiología , Transporte Biológico , Membrana Celular/fisiología , Endocitosis/fisiología , Endosomas/metabolismo , Humanos , Células Jurkat , Proteínas/metabolismo , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA