RESUMEN
BACKGROUND: Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of ß oscillations compared to walking, which facilitates motor continuation. METHODS: We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus. We investigated ß (13-30 Hz) and high γ (60-100 Hz) power during both active and passive cycling with different cadences and compared patients with and without freezing of gait. The passive cycling experiment, where a motor provided a fixed cadence, allowed us to study the effect of isolated sensory inputs without physical exercise. RESULTS: We found similarly strong suppression of pathological ß activity for both active and passive cycling. In contrast, there was stronger high γ band activity for active cycling. Notably, the effects of active and passive cycling were all independent of cadence. Finally, ß suppression was stronger for patients with freezing of gait, especially during passive cycling. CONCLUSIONS: Our results provide evidence for a link between proprioceptive input during cycling and ß suppression. These findings support the role of continuous external sensory input and proprioceptive feedback during rhythmic passive cycling movements and suggest that systematic passive mobilization might hold therapeutic potential. © 2023 International Parkinson and Movement Disorder Society.
Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/complicaciones , Trastornos Neurológicos de la Marcha/etiología , Caminata , Marcha/fisiología , Estimulación Encefálica Profunda/métodos , Ritmo beta/fisiologíaRESUMEN
BACKGROUND: Cueing can alleviate freezing of gait (FOG) in people with Parkinson's disease (PD), but using the same cues continuously in daily life may compromise effectiveness. Therefore, we developed the DeFOG-system to deliver personalized auditory cues on detection of a FOG episode. OBJECTIVES: We aimed to evaluate the effects of DeFOG during a FOG-provoking protocol: (1) after 4 weeks of DeFOG-use in daily life against an active control group; (2) after immediate DeFOG-use (within-group) in different medication states. METHOD: In this randomized controlled trial, 63 people with PD and daily FOG were allocated to the DeFOG or active control group. Both groups received feedback on their daily living step counts using the device, but the DeFOG group also received on-demand cueing. Video-rated FOG severity was compared pre- and post-intervention through a FOG-provoking protocol administered at home off and on-medication, but without using DeFOG. Within-group effects were tested by comparing FOG during the protocol with and without DeFOG. RESULTS: DeFOG-use during the 4 weeks was similar between groups, but we found no between-group differences in FOG-severity. However, the within-group analysis showed that FOG was alleviated by DeFOG (effect size d = 0.57), regardless of medication state. Combining DeFOG and medication yielded an effect size of d = 0.67. CONCLUSIONS: DeFOG reduced FOG considerably in a population of severe freezers both off and on medication. Nonetheless, 4 weeks of DeFOG-use in daily life did not ameliorate FOG during the protocol unless DeFOG was worn. These findings suggest that on-demand cueing is only effective when used, similar to other walking aids. © 2024 International Parkinson and Movement Disorder Society.
Asunto(s)
Señales (Psicología) , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Resultado del TratamientoRESUMEN
BACKGROUND: Freezing of gait is one of the most disturbing motor symptoms of Parkinson's disease (PD). However, the effective connectivity between key brain hubs that are associated with the pathophysiological mechanism of freezing of gait remains elusive. OBJECTIVE: The aim of this study was to identify effective connectivity underlying freezing of gait. METHODS: This study applied spectral dynamic causal modeling (DCM) of resting-state functional magnetic resonance imaging in dedicated regions of interest determined using a data-driven approach. RESULTS: Abnormally increased functional connectivity between the bilateral dorsolateral prefrontal cortex (DLPFC) and the bilateral mesencephalic locomotor region (MLR) was identified in freezers compared with nonfreezers. Subsequently, spectral DCM analysis revealed that increased top-down excitatory effective connectivity from the left DLPFC to bilateral MLR and an independent self-inhibitory connectivity within the left DLPFC in freezers versus nonfreezers (>99% posterior probability) were inversely associated with the severity of freezing of gait. The lateralization of these effective connectivity patterns was not attributable to the initial dopaminergic deficit nor to structural changes in these regions. CONCLUSIONS: We have identified novel effective connectivity and an independent self-inhibitory connectivity underlying freezing of gait. Our findings imply that modulating the effective connectivity between the left DLPFC and MLR through neurostimulation or other interventions could be a target for reducing freezing of gait in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
RESUMEN
BACKGROUND: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression. OBJECTIVES: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale. METHODS: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time. RESULTS: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]). CONCLUSIONS: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Pruebas de Estado Mental y Demencia , Modelos Logísticos , Índice de Severidad de la Enfermedad , Progresión de la EnfermedadRESUMEN
BACKGROUND: Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson's Disease (PD). Traditionally, FOG assessment relies on time-consuming visual inspection of camera footage. Therefore, previous studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment is challenging due to gait variability caused by medication effects and varying FOG-provoking tasks. Moreover, whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized FOG-provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we examined the effect of adding stopping periods on FOG detection performance. METHODS: Twelve PD patients with self-reported FOG (mean age 69.33 ± 6.02 years) completed a FOG-provoking protocol, including timed-up-and-go and 360-degree turning-in-place tasks in On/Off dopaminergic medication states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A temporal convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model-generated outcomes and the gold standard experts' video annotation was assessed by the intra-class correlation coefficient (ICC). RESULTS: For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 [0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG-provoking task could not generalize to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assessment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC (#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data. CONCLUSION: A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing different medication states and FOG-provoking tasks. These results are encouraging and enable future work investigating automated FOG assessment during everyday life.
Asunto(s)
Aprendizaje Profundo , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Anciano , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/diagnóstico , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Marcha , MovimientoRESUMEN
BACKGROUND: Gait deficits in people with Parkinson's disease (PD) are triggered by circumstances requiring gait adaptation. The effects of gait adaptation training on a split-belt treadmill (SBT) are unknown in PD. OBJECTIVE: We investigated the effects of repeated SBT versus tied-belt treadmill (TBT) training on retention and automaticity of gait adaptation and its transfer to over-ground walking and turning. METHODS: We recruited 52 individuals with PD, of whom 22 were freezers, in a multi-center randomized single-blind controlled study. Training consisted of 4 weeks of supervised treadmill training delivered three times per week. Tests were conducted pre- and post-training and at 4-weeks follow-up. Turning (primary outcome) and gait were assessed over-ground and during a gait adaptation protocol on the treadmill. All tasks were performed with and without a cognitive task. RESULTS: We found that SBT-training improved gait adaptation with moderate to large effects sizes (P < 0.02) compared to TBT, effects that were sustained at follow-up and during dual tasking. However, better gait adaptation did not transfer to over-ground turning speed. In both SBT- and TBT-arms, over-ground walking and Movement Disorder Society-Unified Parkinson's Disease Rating Scale III (MDS-UPDRS-III scores were improved, the latter of which reached clinically meaningful effects in the SBT-group only. No impact was found on freezing of gait. CONCLUSION: People with PD are able to learn and retain the ability to overcome asymmetric gait-speed perturbations on a treadmill remarkably well, but seem unable to generalize these skills to asymmetric gait off-treadmill. Future study is warranted into gait adaptation training to boost the transfer of complex walking skills. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Método Simple Ciego , Trastornos Neurológicos de la Marcha/etiología , Marcha , Caminata , Adaptación Fisiológica , Terapia por Ejercicio/métodosRESUMEN
Tapping tasks have the potential to distinguish between ON-OFF fluctuations in Parkinson's disease (PD) possibly aiding assessment of medication status in e-diaries and research. This proof of concept study aims to assess the feasibility and accuracy of a smartphone-based tapping task (developed as part of the cloudUPDRS-project) to discriminate between ON-OFF used in the home setting without supervision. 32 PD patients performed the task before their first medication intake, followed by two test sessions after 1 and 3 h. Testing was repeated for 7 days. Index finger tapping between two targets was performed as fast as possible with each hand. Self-reported ON-OFF status was also indicated. Reminders were sent for testing and medication intake. We studied task compliance, objective performance (frequency and inter-tap distance), classification accuracy and repeatability of tapping. Average compliance was 97.0% (± 3.3%), but 16 patients (50%) needed remote assistance. Self-reported ON-OFF scores and objective tapping were worse pre versus post medication intake (p < 0.0005). Repeated tests showed good to excellent test-retest reliability in ON (0.707 ≤ ICC ≤ 0.975). Although 7 days learning effects were apparent, ON-OFF differences remained. Discriminative accuracy for ON-OFF was particularly good for right-hand tapping (0.72 ≤ AUC ≤ 0.80). Medication dose was associated with ON-OFF tapping changes. Unsupervised tapping tests performed on a smartphone have the potential to classify ON-OFF fluctuations in the home setting, despite some learning and time effects. Replication of these results are needed in a wider sample of patients.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Teléfono Inteligente , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , ManoRESUMEN
Older adults with and without Parkinson's disease show impaired retention after training of motor or cognitive skills. This systematic review with meta-analysis aims to investigate whether adding transcranial direct current stimulation (tDCS) to motor or cognitive training versus placebo boosts motor sequence and working memory training. The effects of interest were estimated between three time points, i.e. pre-training, post-training and follow-up. This review was conducted according to the PRISMA guidelines (PROSPERO: CRD42022348885). Electronic databases were searched from conception to March 2023. Following initial screening, 24 studies were eligible for inclusion in the qualitative synthesis and 20 could be included in the meta-analysis, of which 5 studies concerned motor sequence learning (total n = 186) and 15 working memory training (total n = 650). Results were pooled using an inverse variance random effects meta-analysis. The findings showed no statistically significant additional effects of tDCS over placebo on motor sequence learning outcomes. However, there was a strong trend showing that tDCS boosted working memory training, although methodological limitations and some heterogeneity were also apparent. In conclusion, the present findings do not support wide implementation of tDCS as an add-on to motor sequence training at the moment, but the promising results on cognitive training warrant further investigations.
Asunto(s)
Enfermedad de Parkinson , Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Enfermedad de Parkinson/terapia , Aprendizaje , Memoria a Corto Plazo , Entrenamiento CognitivoRESUMEN
PURPOSE: Consumer-based activity trackers are used to measure and promote PA. We studied the accuracy of a wrist- and waist-worn activity tracker in cancer survivors and compared these results to a healthy age-matched control group. METHODS: Twenty-two cancer survivors and 35 healthy subjects wore an activity tracker at the waist and at the wrist combined with a reference activity monitor at the waist (Dynaport Movemonitor). The devices were worn for 14 consecutive days. The mean daily step count from both activity trackers was compared with the reference activity monitor to investigate accuracy and agreement (paired t-test, intraclass correlation, Bland-Altman plots). To evaluate the accuracy as a coaching tool, day-by-day differences within patients were calculated. The Kendall correlation coefficient was used to test the consistency of ranking daily steps between the activity trackers and the reference activity monitor. RESULTS: The wrist-worn wearable significantly overestimated the daily step count in the cancer group (mean ± SDΔ: + 1305 (2685) steps per day; p = 0.033) and in the healthy control group (mean ± SDΔ: + 1598 (2927) steps per day; p = 0.003). The waist-worn wearable underestimated the step count in both groups, although this was not statistically significant. As a coaching device, moderate (r = 0.642-0.670) and strong (r = 0.733-0.738) accuracy was found for the wrist- and waist-worn tracker, respectively, for detecting day-by-day variability in both populations. CONCLUSION: Our results show that wrist-worn activity trackers significantly overestimate daily step count in both cancer survivors and healthy control subjects. Based on the accuracy, in particular, the waist-worn activity tracker could possibly be used as a coaching tool.
Asunto(s)
Supervivientes de Cáncer , Neoplasias Colorrectales , Tutoría , Humanos , Monitores de Ejercicio , MamaRESUMEN
Maintaining physical activity is an important clinical goal for people with Parkinson's disease (PwPD). We investigated the validity of two commercial activity trackers (ATs) to measure daily step counts. We compared a wrist- and a hip-worn commercial AT against the research-grade Dynaport Movemonitor (DAM) during 14 days of daily use. Criterion validity was assessed in 28 PwPD and 30 healthy controls (HCs) by a 2 × 3 ANOVA and intraclass correlation coefficients (ICC2,1). The ability to measure daily step fluctuations compared to the DAM was studied by a 2 × 3 ANOVA and Kendall correlations. We also explored compliance and user-friendliness. Both the ATs and the DAM measured significantly fewer steps/day in PwPD compared to HCs (p < 0.01). Step counts derived from the ATs showed good to excellent agreement with the DAM in both groups (ICC2,1 > 0.83). Daily fluctuations were detected adequately by the ATs, showing moderate associations with DAM-rankings. While compliance was high overall, 22% of PwPD were disinclined to use the ATs after the study. Overall, we conclude that the ATs had sufficient agreement with the DAM for the purpose of promoting physical activity in mildly affected PwPD. However, further validation is needed before clinical use can be widely recommended.
Asunto(s)
Monitores de Ejercicio , Enfermedad de Parkinson , Humanos , Acelerometría , Reproducibilidad de los Resultados , Ejercicio FísicoRESUMEN
Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait-related modulations of neural activity, we collected high-density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event-related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG-based brain-body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders.
Asunto(s)
Corteza Motora , Corteza Sensoriomotora , Electroencefalografía , Marcha/fisiología , Humanos , Corteza Motora/fisiología , Caminata/fisiologíaRESUMEN
BACKGROUND: Freezing of gait (FOG) is a complex symptom in Parkinson's disease (PD) that is both elusive to elicit and varied in its presentation. These complexities present a challenge to measuring FOG in a sensitive and reliable way, precluding therapeutic advancement. OBJECTIVE: We investigated the reliability, validity, and responsiveness of manual video annotations of the turning-in-place task and compared it to the sensor-based FOG ratio. METHODS: Forty-five optimally medicated people with PD and FOG performed rapid alternating 360° turns without and with an auditory stroop dual task, thrice over two consecutive days. The tasks were video recorded, and inertial sensors were placed on the lower back and shins. Interrater reliability between three raters, criterion validity with self-reported FOG, and responsiveness to single-session split-belt treadmill (SBT) training were investigated and contrasted with the sensor-based FOG ratio. RESULTS: Visual ratings showed excellent agreement between raters for the percentage time frozen (%TF) (ICC [intra-class correlation coefficient] = 0.99), the median duration of a FOG episode (ICC = 0.90), and the number of FOG episodes (ICC = 0.86). Dual tasking improved the sensitivity and validity of visual FOG ratings resulting in increased FOG detection, criterion validity with self-reported FOG ratings, and responsiveness to a short SBT intervention. The sensor-based FOG ratio, on the contrary, showed complex FOG presentation-contingent relationships with visual and self-reported FOG ratings and limited responsiveness to SBT training. CONCLUSIONS: Manual video annotations of FOG during dual task turning in place generate reliable, valid, and sensitive outcomes for investigating therapeutic effects on FOG. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Marcha , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Evaluación de Resultado en la Atención de Salud , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Reproducibilidad de los ResultadosRESUMEN
Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Dopamina , Marcha/fisiología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , InvestigaciónRESUMEN
Motor control of automatized and overlearned sequences, such as writing, is affected in Parkinson's disease (PD), impacting patients' daily life. Medication effects on motor performance are not only task-specific, but also variable within tasks. The nature of this variance is still unclear. This study aimed to investigate whether medication affects writing sequences differently when producing up- or downstrokes. Writing was assessed in healthy controls (HC) (N = 31) and PD (N = 32), when ON and OFF medication in a randomized order (interspersed by two months). Subjects wrote a sequential pattern with an increasing size on a digital tablet. Writing outcomes were movement vigor (amplitude and velocity), error and end-point variability, and sequence continuation, calculated separately for up- and downstrokes. Results showed that PD patients OFF-medication reduced movement vigor (amplitude) for up- and downstrokes compared to HC. Clear deficits were found for up- but not for downstroke error in PD patients in OFF, suggesting a directional bias. Dopaminergic medication improved motor vigor by increasing writing amplitude and upstroke continuation, but this occurred at the cost of the downstroke trajectory. Other writing outcomes did not improve with medication intake. In conclusion, we interpret these findings as that the impact of dopamine is complex, highly task-specific, supporting the most highly energy demanding components of a writing sequence. As medication did not regulate downstroke writing, we recommend supplementary training to address task demands that were less modulated by dopamine (registration: https://osf.io/gk5q8/ , 17 July 2018).
Asunto(s)
Levodopa , Enfermedad de Parkinson , Dopamina , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , EscrituraRESUMEN
BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects on functional independence and quality of life and are associated with increased morbidity, mortality and health related costs. Current guidelines are inconsistent, with no up-to-date, globally applicable ones present. OBJECTIVES: to create a set of evidence- and expert consensus-based falls prevention and management recommendations applicable to older adults for use by healthcare and other professionals that consider: (i) a person-centred approach that includes the perspectives of older adults with lived experience, caregivers and other stakeholders; (ii) gaps in previous guidelines; (iii) recent developments in e-health and (iv) implementation across locations with limited access to resources such as low- and middle-income countries. METHODS: a steering committee and a worldwide multidisciplinary group of experts and stakeholders, including older adults, were assembled. Geriatrics and gerontological societies were represented. Using a modified Delphi process, recommendations from 11 topic-specific working groups (WGs), 10 ad-hoc WGs and a WG dealing with the perspectives of older adults were reviewed and refined. The final recommendations were determined by voting. RECOMMENDATIONS: all older adults should be advised on falls prevention and physical activity. Opportunistic case finding for falls risk is recommended for community-dwelling older adults. Those considered at high risk should be offered a comprehensive multifactorial falls risk assessment with a view to co-design and implement personalised multidomain interventions. Other recommendations cover details of assessment and intervention components and combinations, and recommendations for specific settings and populations. CONCLUSIONS: the core set of recommendations provided will require flexible implementation strategies that consider both local context and resources.
Asunto(s)
Vida Independiente , Calidad de Vida , Anciano , Cuidadores , Humanos , Medición de RiesgoRESUMEN
BACKGROUND: Most people with Parkinson's disease (PD) experience at least one fall during the course of their disease. Several interventions designed to reduce falls have been studied. An up-to-date synthesis of evidence for interventions to reduce falls in people with PD will assist with informed decisions regarding fall-prevention interventions for people with PD. OBJECTIVES: To assess the effects of interventions designed to reduce falls in people with PD. SEARCH METHODS: CENTRAL, MEDLINE, Embase, four other databases and two trials registers were searched on 16 July 2020, together with reference checking, citation searching and contact with study authors to identify additional studies. We also conducted a top-up search on 13 October 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of interventions that aimed to reduce falls in people with PD and reported the effect on falls. We excluded interventions that aimed to reduce falls due to syncope. DATA COLLECTION AND ANALYSIS: We used standard Cochrane Review procedures. Primary outcomes were rate of falls and number of people who fell at least once. Secondary outcomes were the number of people sustaining one or more fall-related fractures, quality of life, adverse events and economic outcomes. The certainty of the evidence was assessed using GRADE. MAIN RESULTS: This review includes 32 studies with 3370 participants randomised. We included 25 studies of exercise interventions (2700 participants), three studies of medication interventions (242 participants), one study of fall-prevention education (53 participants) and three studies of exercise plus education (375 participants). Overall, participants in the exercise trials and the exercise plus education trials had mild to moderate PD, while participants in the medication trials included those with more advanced disease. All studies had a high or unclear risk of bias in one or more items. Illustrative risks demonstrating the absolute impact of each intervention are presented in the summary of findings tables. Twelve studies compared exercise (all types) with a control intervention (an intervention not thought to reduce falls, such as usual care or sham exercise) in people with mild to moderate PD. Exercise probably reduces the rate of falls by 26% (rate ratio (RaR) 0.74, 95% confidence interval (CI) 0.63 to 0.87; 1456 participants, 12 studies; moderate-certainty evidence). Exercise probably slightly reduces the number of people experiencing one or more falls by 10% (risk ratio (RR) 0.90, 95% CI 0.80 to 1.00; 932 participants, 9 studies; moderate-certainty evidence). We are uncertain whether exercise makes little or no difference to the number of people experiencing one or more fall-related fractures (RR 0.57, 95% CI 0.28 to 1.17; 989 participants, 5 studies; very low-certainty evidence). Exercise may slightly improve health-related quality of life immediately following the intervention (standardised mean difference (SMD) -0.17, 95% CI -0.36 to 0.01; 951 participants, 5 studies; low-certainty evidence). We are uncertain whether exercise has an effect on adverse events or whether exercise is a cost-effective intervention for fall prevention. Three studies trialled a cholinesterase inhibitor (rivastigmine or donepezil). Cholinesterase inhibitors may reduce the rate of falls by 50% (RaR 0.50, 95% CI 0.44 to 0.58; 229 participants, 3 studies; low-certainty evidence). However, we are uncertain if this medication makes little or no difference to the number of people experiencing one or more falls (RR 1.01, 95% CI 0.90 to 1.14230 participants, 3 studies) and to health-related quality of life (EQ5D Thermometer mean difference (MD) 3.00, 95% CI -3.06 to 9.06; very low-certainty evidence). Cholinesterase inhibitors may increase the rate of non fall-related adverse events by 60% (RaR 1.60, 95% CI 1.28 to 2.01; 175 participants, 2 studies; low-certainty evidence). Most adverse events were mild and transient in nature. No data was available regarding the cost-effectiveness of medication for fall prevention. We are uncertain of the effect of education compared to a control intervention on the number of people who fell at least once (RR 10.89, 95% CI 1.26 to 94.03; 53 participants, 1 study; very low-certainty evidence), and no data were available for the other outcomes of interest for this comparisonWe are also uncertain (very low-certainty evidence) whether exercise combined with education makes little or no difference to the number of falls (RaR 0.46, 95% CI 0.12 to 1.85; 320 participants, 2 studies), the number of people sustaining fall-related fractures (RR 1.45, 95% CI 0.40 to 5.32,320 participants, 2 studies), or health-related quality of life (PDQ39 MD 0.05, 95% CI -3.12 to 3.23, 305 participants, 2 studies). Exercise plus education may make little or no difference to the number of people experiencing one or more falls (RR 0.89, 95% CI 0.75 to 1.07; 352 participants, 3 studies; low-certainty evidence). We are uncertain whether exercise combined with education has an effect on adverse events or is a cost-effective intervention for fall prevention. AUTHORS' CONCLUSIONS: Exercise interventions probably reduce the rate of falls, and probably slightly reduce the number of people falling in people with mild to moderate PD. Cholinesterase inhibitors may reduce the rate of falls, but we are uncertain if they have an effect on the number of people falling. The decision to use these medications needs to be balanced against the risk of non fall-related adverse events, though these adverse events were predominantly mild or transient in nature. Further research in the form of large, high-quality RCTs are required to determine the relative impact of different types of exercise and different levels of supervision on falls, and how this could be influenced by disease severity. Further work is also needed to increase the certainty of the effects of medication and further explore falls prevention education interventions both delivered alone and in combination with exercise.
Asunto(s)
Fracturas Óseas , Enfermedad de Parkinson , Inhibidores de la Colinesterasa , Ejercicio Físico , Humanos , Enfermedad de Parkinson/complicaciones , Calidad de VidaRESUMEN
BACKGROUND: Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson's disease. Further insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural network. METHODS: Automated FOG assessment can be formulated as an action segmentation problem, where temporal models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to automatically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchical spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces over-segmentation errors by refining the predictions over multiple stages. The proposed model was validated on a dataset of fourteen freezers, fourteen non-freezers, and fourteen healthy control subjects. RESULTS: The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, FOG outcomes derived from MS-GCN predictions had an excellent (r = 0.93 [0.87, 0.97]) and moderately strong (r = 0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations. CONCLUSIONS: The proposed MS-GCN may provide an automated and objective alternative to labor-intensive clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a larger and more varied verification cohort.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Marcha , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Movimiento (Física) , Redes Neurales de la Computación , Enfermedad de Parkinson/complicacionesRESUMEN
BACKGROUND: It is not clear how specific gait measures reflect disease severity across the disease spectrum in Parkinson's disease (PD). OBJECTIVE: To identify the gait and mobility measures that are most sensitive and reflective of PD motor stages and determine the optimal sensor location in each disease stage. METHODS: Cross-sectional wearable-sensor records were collected in 332 patients with PD (Hoehn and Yahr scale I-III) and 100 age-matched healthy controls. Sensors were adhered to the participant's lower back, bilateral ankles, and wrists. Study participants walked in a ~15-meter corridor for 1 minute under two walking conditions: (1) preferred, usual walking speed and (2) walking while engaging in a cognitive task (dual-task). A subgroup (n = 303, 67% PD) also performed the Timed Up and Go test. Multiple machine-learning feature selection and classification algorithms were applied to discriminate between controls and PD and between the different PD severity stages. RESULTS: High discriminatory values were found between motor disease stages with mean sensitivity in the range 72%-83%, specificity 69%-80%, and area under the curve (AUC) 0.76-0.90. Measures from upper-limb sensors best discriminated controls from early PD, turning measures obtained from the trunk sensor were prominent in mid-stage PD, and stride timing and regularity were discriminative in more advanced stages. CONCLUSIONS: Applying machine-learning to multiple, wearable-derived features reveals that different measures of gait and mobility are associated with and discriminate distinct stages of PD. These disparate feature sets can augment the objective monitoring of disease progression and may be useful for cohort selection and power analyses in clinical trials of PD. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Estudios Transversales , Marcha , Humanos , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico , Equilibrio Postural , Estudios de Tiempo y Movimiento , CaminataRESUMEN
Diverse but complementary methodologies are required to uncover the complex determinants and pathophysiology of freezing of gait. To develop future therapeutic avenues, we need a deeper understanding of the disseminated functional-anatomic network and its temporally associated dynamic processes. In this targeted review, we will summarize the latest advances across multiple methodological domains including clinical phenomenology, neurogenetics, multimodal neuroimaging, neurophysiology, and neuromodulation. We found that (i) locomotor network vulnerability is established by structural damage, e.g. from neurodegeneration possibly as result from genetic variability, or to variable degree from brain lesions. This leads to an enhanced network susceptibility, where (ii) modulators can both increase or decrease the threshold to express freezing of gait. Consequent to a threshold decrease, (iii) neuronal integration failure of a multilevel brain network will occur and affect one or numerous nodes and projections of the multilevel network. Finally, (iv) an ultimate pathway might encounter failure of effective motor output and give rise to freezing of gait as clinical endpoint. In conclusion, we derive key questions from this review that challenge this pathophysiological view. We suggest that future research on these questions should lead to improved pathophysiological insight and enhanced therapeutic strategies.
Asunto(s)
Encéfalo/fisiopatología , Trastornos Neurológicos de la Marcha/fisiopatología , Enfermedad de Parkinson/fisiopatología , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Citocromo P-450 CYP2D6/genética , Neuroimagen Funcional , Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/genética , Glucosilceramidasa/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Imagen por Resonancia Magnética , Mutación , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/genética , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects both on quality of life and functional independence and are associated with increased morbidity, mortality and health care costs. Current clinical approaches and advice from falls guidelines vary substantially between countries and settings, warranting a standardised approach. At the first World Congress on Falls and Postural Instability in Kuala Lumpur, Malaysia, in December 2019, a worldwide task force of experts in falls in older adults, committed to achieving a global consensus on updating clinical practice guidelines for falls prevention and management by incorporating current and emerging evidence in falls research. Moreover, the importance of taking a person-centred approach and including perspectives from patients, caregivers and other stakeholders was recognised as important components of this endeavour. Finally, the need to specifically include recent developments in e-health was acknowledged, as well as the importance of addressing differences between settings and including developing countries. METHODS: a steering committee was assembled and 10 working Groups were created to provide preliminary evidence-based recommendations. A cross-cutting theme on patient's perspective was also created. In addition, a worldwide multidisciplinary group of experts and stakeholders, to review the proposed recommendations and to participate in a Delphi process to achieve consensus for the final recommendations, was brought together. CONCLUSION: in this New Horizons article, the global challenges in falls prevention are depicted, the goals of the worldwide task force are summarised and the conceptual framework for development of a global falls prevention and management guideline is presented.