Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene Expr ; 19(2): 97-119, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30189915

RESUMEN

The analysis of molecular states of individual cells, as defined by their mRNA expression profiles and protein composition, has gained widespread interest in studying biological phenomena ranging from embryonic development to homeostatic tissue function and genesis and evolution of cancers. Although the molecular content of individual cells in a tissue can vary widely, their molecular states tend to be constrained within a transcriptional landscape partly described by the canonical archetypes of a population of cells. In this study, we sought to characterize the effects of an acute (partial hepatectomy) and chronic (alcohol consumption) perturbation on the molecular states of individual hepatocytes during the onset and progression of liver regeneration. We analyzed the expression of 84 genes across 233 individual hepatocytes acquired using laser capture microdissection. Analysis of the single-cell data revealed that hepatocyte molecular states can be considered as distributed across a set of four states irrespective of perturbation, with the proportions of hepatocytes in these states being dependent on the perturbation. In addition to the quiescent, primed, and replicating hepatocytes, we identified a fourth molecular state lying between the primed and replicating subpopulations. Comparison of the proportions of hepatocytes from each experimental condition in these four molecular states suggested that, in addition to aberrant priming, a slower transition from primed to replication state could contribute toward ethanol-mediated suppression of liver regenerative response to partial hepatectomy.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol/farmacología , Hepatectomía , Hepatocitos/efectos de los fármacos , Regeneración Hepática/efectos de los fármacos , Animales , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Regeneración Hepática/genética , Masculino , Ratas Sprague-Dawley
2.
PLoS One ; 10(10): e0140236, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26452159

RESUMEN

NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx). We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs). We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new insights as to how ethanol treatment may affect cell-type specific processes regulated by NF-κB activation in liver cells.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Etanol/farmacología , Hepatectomía , Hígado/citología , Hígado/efectos de los fármacos , FN-kappa B/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hígado/cirugía , Masculino , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA