Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R67-R77, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539355

RESUMEN

Consumption of a high-fat, high-fructose diet [Western diet (WD)] promotes vascular stiffness, a critical factor in the development of cardiovascular disease (CVD). Obese and diabetic women exhibit greater arterial stiffness than men, which contributes to the increased incidence of CVD in these women. Furthermore, high-fructose diets result in elevated plasma concentrations of uric acid via xanthine oxidase (XO) activation, and uric acid elevation is also associated with increased vascular stiffness. However, the mechanisms by which increased xanthine oxidase activity and uric acid contribute to vascular stiffness in obese females remain to be fully uncovered. Accordingly, we examined the impact of XO inhibition on endothelial function and vascular stiffness in female C57BL/6J mice fed a WD or regular chow for 16 wk. WD feeding resulted in increased arterial stiffness, measured by atomic force microscopy in aortic explants (16.19 ± 1.72 vs. 5.21 ± 0.54 kPa, P < 0.05), as well as abnormal aortic endothelium-dependent and -independent vasorelaxation. XO inhibition with allopurinol (widely utilized in the clinical setting) substantially improved vascular relaxation and attenuated stiffness (16.9 ± 0.50 vs. 3.44 ± 0.50 kPa, P < 0.05) while simultaneously lowering serum uric acid levels (0.55 ± 0.98 vs. 0.21 ± 0.04 mg/dL, P < 0.05). In addition, allopurinol improved WD-induced markers of fibrosis and oxidative stress in aortic tissue, as analyzed by immunohistochemistry and transmission electronic microscopy. Collectively, these results demonstrate that XO inhibition protects against WD-induced vascular oxidative stress, fibrosis, impaired vasorelaxation, and aortic stiffness in females. Furthermore, excessive oxidative stress resulting from XO activation appears to play a key role in mediating vascular dysfunction induced by chronic exposure to WD consumption in females.


Asunto(s)
Alopurinol/administración & dosificación , Aorta/fisiología , Dieta Occidental , Ácido Úrico/sangre , Rigidez Vascular/fisiología , Vasodilatación/fisiología , Xantina Oxidasa/metabolismo , Animales , Aorta/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Rigidez Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Sistema Vasomotor/efectos de los fármacos , Sistema Vasomotor/fisiología , Xantina Oxidasa/antagonistas & inhibidores
2.
Nucleic Acids Res ; 41(4): 2769-78, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23303782

RESUMEN

Zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs) have been shown to induce targeted mutations, but they have not been extensively tested in any animal model. Here, we describe a large-scale comparison of ZFN and TALEN mutagenicity in zebrafish. Using deep sequencing, we found that TALENs are significantly more likely to be mutagenic and induce an average of 10-fold more mutations than ZFNs. We observed a strong correlation between somatic and germ-line mutagenicity, and identified germ line mutations using ZFNs whose somatic mutations rates are well below the commonly used threshold of 1%. Guidelines that have previously been proposed to predict optimal ZFN and TALEN target sites did not predict mutagenicity in vivo. However, we observed a significant negative correlation between TALEN mutagenicity and the number of CpG repeats in TALEN target sites, suggesting that target site methylation may explain the poor mutagenicity of some TALENs in vivo. The higher mutation rates and ability to target essentially any sequence make TALENs the superior technology for targeted mutagenesis in zebrafish, and likely other animal models.


Asunto(s)
Desoxirribonucleasas/metabolismo , Mutagénesis , Dedos de Zinc , Animales , Islas de CpG , Mutación de Línea Germinal , Mutación INDEL , Mutación , Pez Cebra/embriología , Pez Cebra/genética
3.
Neuron ; 89(4): 842-56, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26889812

RESUMEN

Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.


Asunto(s)
Regulación de la Expresión Génica/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sueño/genética , Vigilia/genética , Factores de Edad , Compuestos de Anilina/farmacología , Animales , Tronco Encefálico/citología , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Larva , Ratones Transgénicos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Pirimidinas/farmacología , Receptores de Complemento 3b/metabolismo , Receptores de Neurotransmisores/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA