Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 37, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263204

RESUMEN

BACKGROUND: Therapeutic strategies based on scavenging reactive oxygen species (ROS) and suppressing inflammatory cascades are effective in improving functional recovery after spinal cord injury (SCI). However, the lack of targeting nanoparticles (NPs) with powerful antioxidant and anti-inflammatory properties hampers the clinical translation of these strategies. Here, CD44-targeting hyaluronic acid-selenium (HA-Se) NPs were designed and prepared for scavenging ROS and suppressing inflammatory responses in the injured spinal cord, enhancing functional recovery. RESULTS: The HA-Se NPs were easily prepared through direct reduction of seleninic acid in the presence of HA. The obtained HA-Se NPs exhibited a remarkable capacity to eliminate free radicals and CD44 receptor-facilitated internalization by astrocytes. Moreover, the HA-Se NPs effectively mitigated the secretion of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6) by microglia cells (BV2) upon lipopolysaccharide-induced inflammation. In vivo experiments confirmed that HA-Se NPs could effectively accumulate within the lesion site through CD44 targeting. As a result, HA-Se NPs demonstrated superior protection of axons and neurons within the injury site, leading to enhanced functional recovery in a rat model of SCI. CONCLUSIONS: These results highlight the potential of CD44-targeting HA-Se NPs for SCI treatment.


Asunto(s)
Selenio , Traumatismos de la Médula Espinal , Animales , Ratas , Ácido Hialurónico , Especies Reactivas de Oxígeno , Recuperación de la Función
2.
Mater Today Bio ; 23: 100888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075250

RESUMEN

Promoting the recovery of neurological function in patients with traumatic spinal cord injury (TSCI) remains challenging. The balance between astrocyte-mediated neurotrophic and pro-inflammatory responses is critical for TSCI repair. Recently, the utilization of nanomaterials has been considerably explored in immunological reconstructive techniques that specifically target astrocyte-mediated inflammation, yielding positive outcomes. In this review, we aim to condense the present knowledge regarding the astrocyte-mediated inflammation following TSCI. We then review the various categories of nanomaterials utilized in the management of astrocyte-mediated inflammation in TSCI and conclude by summarizing their functions and advantages to offer novel insights for the advancement of effective clinical strategies targeting TSCI.

3.
Neural Regen Res ; 20(7): 1883-1899, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254548

RESUMEN

Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA