Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(1): 209-217.e7, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34951964

RESUMEN

Extrachromosomal circular DNA (eccDNA) is common in somatic tissue, but its existence and effects in the human germline are unexplored. We used microscopy, long-read DNA sequencing, and new analytic methods to document thousands of eccDNAs from human sperm. EccDNAs derived from all genomic regions and mostly contained a single DNA fragment, although some consisted of multiple fragments. The generation of eccDNA inversely correlates with the meiotic recombination rate, and chromosomes with high coding-gene density and Alu element abundance form the least eccDNA. Analysis of insertions in human genomes further indicates that eccDNA can persist in the human germline when the circular molecules reinsert themselves into the chromosomes. Our results suggest that eccDNA has transient and permanent effects on the germline. They explain how differences in the physical and genetic map might arise and offer an explanation of how Alu elements coevolved with genes to protect genome integrity against deleterious mutations producing eccDNA.


Asunto(s)
Cromosomas Humanos , ADN Circular/metabolismo , Meiosis , Recombinación Genética , Espermatozoides/metabolismo , Elementos Alu , ADN Circular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Mutación
2.
J Biol Chem ; 300(4): 107158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479598

RESUMEN

Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.


Asunto(s)
Células Madre Mesenquimatosas , Osteoblastos , Osteocitos , Periostio , Animales , Ratones , Condrocitos/metabolismo , Condrocitos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/metabolismo , Osteoblastos/citología , Osteocitos/metabolismo , Osteocitos/citología , Periostio/citología , Periostio/metabolismo , Análisis de la Célula Individual , Ratones Endogámicos C57BL
3.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198068

RESUMEN

Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.


Asunto(s)
ADN Circular , Genoma , ADN Circular/genética , ADN/genética , Células Eucariotas
4.
Haematologica ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385272

RESUMEN

Multiple myeloma (MM) remains incurable due to disease relapse and drug resistance. Notch signals from the tumor microenvironment (TME) confer chemoresistance, but the cellular and molecular mechanisms are not entirely understood. Using clinical and transcriptomic datasets, we found that NOTCH3 is upregulated in CD138+ cells from newly diagnosed MM (NDMM) patients compared to healthy individuals and increased in progression/relapsed MM (PRMM) patients. Further, NDMM patients with high NOTCH3 expression exhibited worse responses to Bortezomib (BOR)-based therapies. Cells of the TME, including osteocytes, upregulated NOTCH3 in MM cells and protected them from apoptosis induced by BOR. NOTCH3 activation (NOTCH3OE) in MM cells decreased BOR anti-MM efficacy and its ability to improve survival in in vivo myeloma models. Molecular analyses revealed that NDMM and PRMM patients with high NOTCH3 exhibit CXCL12 upregulation. TME cells upregulated CXCL12 and activated the CXCR4 pathway in MM cells in a NOTCH3-dependent manner. Moreover, genetic or pharmacologic inhibition of CXCL12 in NOTCH3OE MM cells restored sensitivity to BOR regimes in vitro and in human bones bearing NOTCH3OE MM tumors cultured ex vivo. Our clinical and preclinical data unravel a novel NOTCH3-CXCL12 pro-survival signaling axis in the TME and suggest that osteocytes transmit chemoresistance signals to MM cells.

5.
BMC Plant Biol ; 23(1): 59, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707785

RESUMEN

BACKGROUND: Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed. RESULTS: The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis. CONCLUSIONS: In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.


Asunto(s)
Genoma del Cloroplasto , Rhamnaceae , Genoma del Cloroplasto/genética , Rhamnaceae/genética , Filogenia , Genómica/métodos , Cloroplastos/genética
6.
FASEB J ; 36(10): e22519, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36052712

RESUMEN

Mechanical signals stimulate mitochondrial function but the molecular mechanisms are not clear. Here, we show that the mechanically sensitive ion channel Piezo1 plays a critical role in mitochondrial adaptation to mechanical stimulation. The activation of Piezo1 induced mitochondrial calcium uptake and oxidative phosphorylation (OXPHOS). In contrast, loss of Piezo1 reduced the mitochondrial oxygen consumption rate (OCR) and adenosine triphosphate (ATP) production in calvarial cells and these changes were associated with increased expression of the phosphodiesterases Pde4a and lower cyclic AMP (cAMP) levels. In addition, Piezo1 increased cAMP production and the activation of a cAMP-responsive transcriptional reporter. Consistent with this, cAMP was sufficient to increase mitochondrial OCR and the inhibition of phosphodiesterases augmented the increase in OCR induced by Piezo1. Moreover, the inhibition of cAMP production or activity of protein kinase A, a kinase activated by cAMP, prevented the increase in OCR induced by Piezo1. These results demonstrate that cAMP signaling contributes to the increase in mitochondrial OXPHOS induced by activation of Piezo1.


Asunto(s)
AMP Cíclico , Mitocondrias , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal
7.
Nucleic Acids Res ; 49(2): e7, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-32710622

RESUMEN

Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Procesamiento Postranscripcional del ARN , RNA-Seq , Error Científico Experimental , Programas Informáticos , Adenina/análogos & derivados , Adenina/análisis , Animales , Línea Celular , Escherichia coli/genética , Humanos , Meiosis , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Motivos de Nucleótidos , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Curva ROC , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Moldes Genéticos , Transcripción Genética
8.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887228

RESUMEN

Novel biomarkers are highly required for the diagnosis and predicting prognosis of hepatocellular carcinoma (HCC). In this study, we investigated the profiles of long non-coding RNAs (lncRNAs) obtained from the peripheral blood mononuclear cells (PBMCs) of patients with HCC and PBMCs from a co-culture model using transcriptomic analysis. The differentially expressed lncRNAs (DElncRNAs) were then characterized and integrated as cancer-induced lncRNAs. Among them, three up-regulating DElncRNAs including MIR4435-2HG, SNHG9 and lnc-LCP2-1 and one down-regulating, lnc-POLD3-2, were identified. The functional analysis showed that these enriched lncRNAs were mainly associated with carcinogenesis and immune responses. Following further validation in PBMCs samples (100 HBV-related HCC, 100 chronic hepatitis B and 100 healthy controls), MIR4435-2HG, lnc-POLD3-2 and their combination were revealed to be sensitive biomarkers in discriminating HCC from non-HCC (AUROC = 0.78, 0.80, and 0.87, respectively), particularly among individuals with normal serum alpha-fetoprotein levels. Additionally, high circulating SNHG9 expression was shown to be an independent prognostic factor of overall survival in patients with HCC. These results indicate that determining these lncRNAs in PBMCs could serve as novel diagnostic and prognostic biomarkers for HBV-related HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucocitos Mononucleares/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , ARN Largo no Codificante/metabolismo , Transcriptoma
9.
J Infect Dis ; 224(8): 1410-1421, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33598686

RESUMEN

BACKGROUND: The influence of direct-acting antivirals (DAAs) on the composition of gut microbiota in hepatitis C virus (HCV)-infected patients with or without human immunodeficiency virus (HIV) is unclear. METHODS: We enrolled 62 patients with HCV monoinfection and 24 patients with HCV/HIV coinfection receiving elbasvir-grazoprevir from a clinical trial. Fecal specimens collected before treatment and 12 weeks after treatment were analyzed using amplicon-based 16S ribosomal RNA sequencing. RESULTS: Sustained virological response rates in the monoinfection and coinfection groups were similar (98.4% vs 95.8%). Pretreatment bacterial communities in the patient groups were less diverse and distinct from those of healthy controls. Compared with HCV-monoinfected patients, HCV/HIV-coinfected individuals showed comparable microbial alpha diversity but decreased Firmicutes-Bacteroidetes ratios. The improvement of microbial dysbiosis was observed in responders achieving sustained virological response across fibrosis stages but was not found in nonresponders. Responders with a low degree of fibrosis exhibited a recovery in alpha diversity to levels comparable to those in healthy controls. Reciprocal alterations of increased beneficial bacteria and reduced pathogenic bacteria were also observed in responders. CONCLUSIONS: This study indicates a short-term effect of direct-acting antivirals in restoration of microbial dysbiosis. The favorable changes in gut microbiota profiles after viral eradication might contribute toward the reduction of HCV-related complications among infected individuals.


Asunto(s)
Antivirales/uso terapéutico , Benzofuranos/uso terapéutico , Coinfección/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Microbioma Gastrointestinal , Infecciones por VIH/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Imidazoles/uso terapéutico , Quinoxalinas/uso terapéutico , Adulto , Anciano , Antivirales/efectos adversos , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Disbiosis/complicaciones , Femenino , Infecciones por VIH/complicaciones , Hepacivirus , Hepatitis C/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Carga Viral
10.
Metab Brain Dis ; 36(7): 1641-1671, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34338974

RESUMEN

Early diagnosis and treatment for autism spectrum disorder (ASD) pose challenges. The current diagnostic approach for ASD is mainly clinical assessment of patient behaviors. Biomarkers-based identification of ASD would be useful for pediatricians. Currently, there is no specific treatment for ASD, and evidence for the efficacy of alternative treatments remains inconclusive. The prevalence of ASD is increasing, and it is becoming more urgent to find the pathogenesis of such disorder. Metabolomic studies have been used to deeply investigate the alteration of metabolic pathways, including those associated with ASD. Metabolomics is a promising tool for identifying potential biomarkers and possible pathogenesis of ASD. This review comprehensively summarizes and discusses the abnormal metabolic pathways in ASD children, as indicated by evidence from metabolomic studies in urine and blood. In addition, the targeted interventions that could correct the metabolomic profiles relating to the improvement of autistic behaviors in affected animals and humans have been included. The results revealed that the possible underlying pathophysiology of ASD were alterations of amino acids, reactive oxidative stress, neurotransmitters, and microbiota-gut-brain axis. The potential common pathways shared by animal and human studies related to the improvement of ASD symptoms after pharmacological interventions were mammalian-microbial co-metabolite, purine metabolism, and fatty acid oxidation. The content of this review may contribute to novel biomarkers for the early diagnosis of ASD and possible therapeutic paradigms.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Metabolómica , Animales , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/tratamiento farmacológico , Biomarcadores/sangre , Biomarcadores/orina , Humanos , Isotiocianatos/uso terapéutico , Redes y Vías Metabólicas , Sulfóxidos/uso terapéutico , Suramina/uso terapéutico
11.
J Proteome Res ; 19(1): 269-278, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31625748

RESUMEN

Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS. Using this approach, we identified and validated the levels of several lipids in mouse serum that were significantly altered following Alum administration. These lipids showed a biphasic response even 168 h after vaccination. The majority of the lipids were triglycerides (TAGs), where TAGs with long-chain unsaturated fatty acids (FAs) decreased at 24 h and TAGs with short-chain FAs decreased at 168 h. To our knowledge, this is the first report on the impact of human vaccine adjuvant Alum on the host metabolome, which may provide new insights into the mechanism of action of Alum.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , Metabolómica/métodos , Triglicéridos/sangre , Animales , Antígenos Bacterianos/administración & dosificación , Cromatografía Liquida , Femenino , Inmunización , Lípidos/sangre , Espectrometría de Masas , Ratones Endogámicos , Reproducibilidad de los Resultados , Factores de Tiempo , Vacunas contra la Tuberculosis/farmacología
12.
Genome Res ; 27(11): 1783-1794, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29030469

RESUMEN

The stochastic dynamics and regulatory mechanisms that govern differentiation of individual human neural precursor cells (NPC) into mature neurons are currently not fully understood. Here, we used single-cell RNA-sequencing (scRNA-seq) of developing neurons to dissect/identify NPC subtypes and critical developmental stages of alternative lineage specifications. This study comprises an unsupervised, high-resolution strategy for identifying cell developmental bifurcations, tracking the stochastic transcript kinetics of the subpopulations, elucidating regulatory networks, and finding key regulators. Our data revealed the bifurcation and developmental tracks of the two NPC subpopulations, and we captured an early (24 h) transition phase that leads to alternative neuronal specifications. The consequent up-regulation and down-regulation of stage- and subpopulation-specific gene groups during the course of maturation revealed biological insights with regard to key regulatory transcription factors and lincRNAs that control cellular programs in the identified neuronal subpopulations.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Células-Madre Neurales/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Humanos , Neurogénesis , ARN Largo no Codificante/genética , Factores de Transcripción/genética
13.
Chem Res Toxicol ; 33(12): 2944-2952, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32799528

RESUMEN

Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O6- or N2-alkyl-2'-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.


Asunto(s)
Aductos de ADN/análisis , ADN/química , Estructura Molecular , Secuenciación de Nanoporos , Tamaño de la Partícula , Plásmidos , Estereoisomerismo , Propiedades de Superficie
14.
FASEB J ; 33(10): 10618-10632, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31225977

RESUMEN

Biomechanical cues within tissue microenvironments are critical for maintaining homeostasis, and their disruption can contribute to malignant transformation and metastasis. Once transformed, metastatic cancer cells can migrate persistently by adapting (plasticity) to changes in the local fibrous extracellular matrix, and current strategies to recapitulate persistent migration rely exclusively on the use of aligned geometries. Here, the controlled interfiber spacing in suspended crosshatch networks of nanofibers induces cells to exhibit plasticity in migratory behavior (persistent and random) and the associated cytoskeletal arrangement. At dense spacing (3 and 6 µm), unexpectedly, elongated cells migrate persistently (in 1 dimension) at high speeds in 3-dimensional shapes with thick nuclei, and short focal adhesion cluster (FAC) lengths. With increased spacing (18 and 36 µm), cells attain 2-dimensional morphologies, have flattened nuclei and longer FACs, and migrate randomly by rapidly detaching their trailing edges that strain the nuclei by ∼35%. At 54-µm spacing, kite-shaped cells become near stationary. Poorly developed filamentous actin stress fibers are found only in cells on 3-µm networks. Gene-expression profiling shows a decrease in transcriptional potential and a differential up-regulation of metabolic pathways. The consistency in observed phenotypes across cell lines supports using this platform to dissect hallmarks of plasticity in migration in vitro.-Jana, A., Nookaew, I., Singh, J., Behkam, B., Franco, A. T., Nain, A. S. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response.


Asunto(s)
Movimiento Celular/fisiología , Citoesqueleto/fisiología , Citoesqueleto de Actina/fisiología , Citoesqueleto de Actina/ultraestructura , Animales , Fenómenos Biomecánicos , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/ultraestructura , Microambiente Celular/genética , Microambiente Celular/fisiología , Citoesqueleto/ultraestructura , Matriz Extracelular/fisiología , Matriz Extracelular/ultraestructura , Adhesiones Focales/fisiología , Adhesiones Focales/ultraestructura , Expresión Génica , Humanos , Células Madre Mesenquimatosas/fisiología , Células Madre Mesenquimatosas/ultraestructura , Ratones , Modelos Biológicos , Nanofibras/ultraestructura
15.
Fish Shellfish Immunol ; 106: 733-741, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32858186

RESUMEN

Biofloc systems generate and accumulate microbial aggregates known as bioflocs. The presence of bioflocs has been shown to change gut bacterial diversity and stimulate innate immunity in shrimp. The microbial niche of bioflocs may therefore have the potential to drive shifts in the shrimp gut microbiota associated with stimulation of innate immunity. We performed shotgun metagenomic analysis and 16S rRNA-based amplicon sequencing to characterize complex bacterial members in bioflocs and the shrimp digestive tract, respectively. Moreover, we determined whether biofloc-grown shrimp with discrete gut microbiomes had an elevation in local immune-related gene expression and systemic immune activities. Our findings demonstrated that the bacterial community in bioflocs changed dynamically during Pacific white shrimp cultivation. Metagenomic analysis revealed that Vibrio comprised 90% of the biofloc population, while Pseualteromonas, Photobacterium, Shewanella, Alteromonas, Bacillus, Lactobacillus, Acinetobacter, Clostridium, Marinifilum, and Pseudomonas were also detected. In the digestive tract, biofloc-grown shrimp maintained the presence of commensal bacteria including Vibrio, Photobacterium, Shewanella, Granulosicoccus, and Ruegeria similar to control shrimp. However, Vibrio and Photobacterium were significantly enriched and declined, respectively, in biofloc-grown shrimp. The presence of bioflocs upregulated immune-related genes encoding serine proteinase and prophenoloxidase in digestive organs which are routinely exposed to gut microbiota. Biofloc-grown shrimp also demonstrated a significant increase in systemic immune status. As a result, the survival rate of biofloc-grown shrimp was substantially higher than that of the control shrimp. Our findings suggested that the high relative abundance of vibrios in bioflocs enriched the number of vibrios in the digestive tract of biofloc-grown shrimp. This shift in gut microbiota composition may be partially responsible for local upregulation of immune-related gene expression in digestive organs and systemic promotion of immune status in circulating hemolymph.


Asunto(s)
Acuicultura , Microbioma Gastrointestinal , Penaeidae , Animales , Fenómenos Fisiológicos Bacterianos , Inmunidad Innata , Metagenómica , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/microbiología , ARN Ribosómico 16S
16.
Nucleic Acids Res ; 46(7): e38, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29346625

RESUMEN

Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error correction. Assembly of the reads derived from all three technologies resulted in complete sequences for all 16 yeast chromosomes, as well as the mitochondrial chromosome, in one step. Further, we identified three types of DNA methylation (5mC, 4mC and 6mA). Comparison between the reference strain S288C and strain CEN.PK113-7D identified chromosomal rearrangements against a background of similar gene content between the two strains. We identified full-length transcripts through ONT direct RNA sequencing technology. This allows for the identification of transcriptional landscapes, including untranslated regions (UTRs) (5' UTR and 3' UTR) as well as differential gene expression quantification. About 91% of the predicted transcripts could be consistently detected across biological replicates grown either on glucose or ethanol. Direct RNA sequencing identified many polyadenylated non-coding RNAs, rRNAs, telomere-RNA, long non-coding RNA and antisense RNA. This work demonstrates a strategy to obtain complete genome sequences and transcriptional landscapes that can be applied to other eukaryal organisms.


Asunto(s)
Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Metilación de ADN/genética , Genómica , Nanoporos , ARN Largo no Codificante/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
17.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31085706

RESUMEN

Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.


Asunto(s)
Muerte Celular , Quimiotaxis/inmunología , Ácidos Grasos Insaturados/administración & dosificación , Neutrófilos/inmunología , Bazo/patología , Animales , Diferenciación Celular , Dieta Alta en Grasa , Factor Estimulante de Colonias de Granulocitos/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Homeostasis , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
18.
Metabolomics ; 15(12): 151, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31741127

RESUMEN

INTRODUCTION: Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE: To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS: Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS: This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-ß-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS: These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.


Asunto(s)
Oryza/química , Oryza/metabolismo , Metabolismo Secundario/fisiología , Animales , Cromatografía Líquida de Alta Presión/métodos , Resistencia a la Enfermedad/genética , Didrogesterona/análogos & derivados , Didrogesterona/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hemípteros/metabolismo , Hemípteros/parasitología , Hemípteros/fisiología , Metaboloma/genética , Oryza/genética , Fenotipo
19.
Nature ; 498(7452): 99-103, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23719380

RESUMEN

Type 2 diabetes (T2D) is a result of complex gene-environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity, diabetes and cardiovascular disease. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Tracto Gastrointestinal/microbiología , Intolerancia a la Glucosa/microbiología , Salud , Metagenoma , Factores de Edad , Anciano , Pueblo Asiatico , Bacterias/genética , Bacterias/aislamiento & purificación , Biomarcadores , Análisis por Conglomerados , Estudios de Cohortes , Factores de Confusión Epidemiológicos , Demografía , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Ambiente , Heces/microbiología , Femenino , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/metabolismo , Humanos , Metagenoma/genética , Persona de Mediana Edad , Modelos Biológicos , Pronóstico , Especificidad de la Especie , Suecia , Población Blanca
20.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-31771283

RESUMEN

Excess energy intake can trigger an uncontrolled inflammatory response, leading to systemic low-grade inflammation and metabolic disturbances that are hypothesised to contribute to cardiovascular disease and type 2 diabetes. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are suggested to mitigate this inflammatory response, but the mechanisms are unclear, especially at the tissue level. Adipose tissues, the first tissues to give an inflammatory response, may be an important target site of action for EPA and DHA. To evaluate the effects of EPA and DHA in white and brown adipose tissues, we fed male C57Bl/6J mice either a high fat diet (HFD) with 5% corn oil, an HFD with 40% of the corn oil substituted for purified EPA and DHA triglycerides (HFD-ED), or normal chow, for 8 weeks. Fatty acid profiling and transcriptomics were used to study how EPA and DHA affect retroperitoneal white and brown adipose tissues. HFD-ED fed mice showed reduced lipid accumulation and levels of the pro-inflammatory fatty acid arachidonic acid in both white and brown adipose tissues, compared with HFD-corn oil fed animals. The transcriptomic analysis showed changes in ß-oxidation pathways, supporting the decreased lipid accumulation in the HFD-ED fed mice. Therefore, our data suggests that EPA and DHA supplementation of a high fat diet may be anti-inflammatory, as well as reduce lipid accumulation in adipose tissues.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Ácido Araquidónico/metabolismo , Aceite de Maíz/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos Omega-3/farmacología , Regulación de la Expresión Génica , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/genética , PPAR alfa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA