Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767707

RESUMEN

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Asunto(s)
Proteínas del Sistema Complemento , Modelos Animales de Enfermedad , Lipopolisacáridos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/inmunología , Salmonella enteritidis/patogenicidad , Animales , Antígenos O/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Lipopolisacáridos/inmunología , Evasión Inmune , Viabilidad Microbiana , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/inmunología , Virulencia , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Activación de Complemento , Lepidópteros/inmunología , Lepidópteros/microbiología
2.
Nucleic Acids Res ; 49(12): 6863-6879, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139017

RESUMEN

Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Helicobacter pylori/genética , Estrés Oxidativo , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Cationes Bivalentes/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Transcripción Genética
3.
Mol Microbiol ; 113(2): 338-355, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31715026

RESUMEN

The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA-DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos/metabolismo , Proteínas de Unión al ADN , Helicobacter pylori , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/química , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Unión Proteica , Origen de Réplica
4.
mSystems ; : e0078424, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980050

RESUMEN

Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE: C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.

5.
Nat Commun ; 14(1): 6715, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872172

RESUMEN

The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Regulón/genética , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Multiómica , Oxidación-Reducción , ADN/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Helicobacter/genética
6.
Vet Microbiol ; 257: 109095, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940458

RESUMEN

Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections and the development of colibacillosis, causing high mortality in farm birds and extensive losses in the poultry industry worldwide. The virulence of APEC is a complex phenomenon associated with numerous mechanisms involving a variety of extracellular and intracellular structures to overcome host barriers. Initial bacterial attachment or adhesion to host cells is vital to bacterial pathogenesis and is determined by various adhesins. These proteins protect pathogens against possible host defense mechanisms, enabling the effective use of other virulence attributes. Considering this property, the current review provides a systematic and in-depth analysis of the latest information on adhesins analyzed in APEC strains. This review discusses in detail each of the adhesin types, such as fimbrial chaperone-usher, fimbrial curli, nonfimbrial and atypical adhesins, and their components, presenting an opportunity to gain a better understanding of different adhesins and mechanisms employed in pathogenesis. Additionally, the article scrutinizes and notes missing information and potential studies that need to be undertaken to develop a complete understanding of APEC adhesion.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana , Infecciones por Escherichia coli/veterinaria , Escherichia coli/patogenicidad , Fimbrias Bacterianas/metabolismo , Adhesinas de Escherichia coli/genética , Animales , Pollos/microbiología , Escherichia coli/fisiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/genética , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/microbiología , Virulencia
7.
Microb Genom ; 7(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34939560

RESUMEN

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli. Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


Asunto(s)
Adhesinas de Escherichia coli/genética , Escherichia coli/genética , Proteínas Hemolisinas/genética , Hierro/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Humanos , Chaperonas Moleculares/genética , Familia de Multigenes , Mutación , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA