Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37865086

RESUMEN

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Asunto(s)
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Metilación de ADN/genética , Proteínas/genética , ADN/metabolismo
2.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965478

RESUMEN

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN , Paraparesia Espástica , Factores de Transcripción , Paraparesia Espástica/genética , Humanos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Femenino , Linaje , Alelos , Lactante , Preescolar , Niño , Adolescente , Estructura Secundaria de Proteína , ARN Nuclear Pequeño/genética
3.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36528028

RESUMEN

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Asunto(s)
Proteínas de Drosophila , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Factor 4A Eucariótico de Iniciación/genética , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071997

RESUMEN

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Femenino , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Humanos
5.
Am J Hum Genet ; 108(8): 1450-1465, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34186028

RESUMEN

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.


Asunto(s)
Canales de Cloruro/genética , Modelos Animales de Enfermedad , Canales Iónicos/fisiología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Adolescente , Animales , Niño , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo
6.
Mod Pathol ; 37(2): 100387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007157

RESUMEN

PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.


Asunto(s)
Cromotripsis , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Niño , Factores de Transcripción/genética , Sarcoma/genética , Proteína EWS de Unión a ARN/genética , Sistema Nervioso Central/patología , Transcriptoma , Neoplasias de los Tejidos Blandos/genética , Proteínas Represoras/genética , Factores de Transcripción de Tipo Kruppel/genética
7.
J Hum Genet ; 69(1): 53-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697026

RESUMEN

Heterozygous deleterious variants in SKI cause Shprintzen-Goldberg Syndrome, which is mainly characterized by craniofacial features, neurodevelopmental disorder and thoracic aorta dilatations/aneurysms. The encoded protein is a member of the transforming growth factor beta signaling. Paucity of reported studies exploring the SGS molecular pathogenesis hampers disease recognition and clinical interpretation of private variants. Here, the unpublished c.349G>A, p.[Gly117Ser] and the recurrent c.539C>T, p.[Thr180Met] SKI variants were studied combining in silico and in vitro approach. 3D comparative modeling and calculation of the interaction energy predicted that both variants alter the SKI tertiary protein structure and its interactions. Computational data were functionally corroborated by the demonstration of an increase of MAPK phosphorylation levels and alteration of cell cycle in cells expressing the mutant SKI. Our findings confirmed the effects of SKI variants on MAPK and opened the path to study the role of perturbations of the cell cycle in SGS.


Asunto(s)
Síndrome de Marfan , Simulación de Dinámica Molecular , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ciclo Celular/genética , Factor de Crecimiento Transformador beta
8.
Clin Genet ; 106(1): 109-113, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38665048

RESUMEN

Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.


Asunto(s)
Discapacidad Intelectual , Fenotipo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/genética , Preescolar , Femenino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología
9.
Am J Med Genet A ; : e63586, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709155

RESUMEN

Aymé-Gripp syndrome (AYGRPS) is a multisystemic disorder caused by a subset of pathogenic variants in the MAF gene. Major clinical features include bilateral early cataracts, sensorineural hearing loss (SNHL), and a characteristic facial appearance along with variable neurodevelopmental delay. Pericarditis resulting in pericardial effusion of varying degree has been observed in a subset of affected individuals and could represent a severe feature in neonatal or infantile age. Here, we describe a syndromic infant with massive pericardial effusion and craniofacial features that oriented toward the suspicion of AYGRPS, which was subsequently confirmed by the molecular analysis of MAF. Pericardial effusion was first observed prenatally and documented to be recurrent, progressive, and severe in the first months of life, thus requiring pericardiocentesis and surgical procedures. In this report, we provide further delineation of the minor clinical characteristics, particularly focusing on cardiac features of AYGRPS. A dedicated cardiac surveillance of these findings may help reduce the morbidity and mortality of this rare condition.

10.
Am J Med Genet A ; 194(7): e63580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38511524

RESUMEN

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 20 , Niño , Preescolar , Femenino , Humanos , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cromosomas Humanos Par 20/genética , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Adolescente
11.
Brain ; 146(2): 534-548, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35979925

RESUMEN

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Trastornos del Desarrollo del Lenguaje , Trastornos del Neurodesarrollo , Animales , Ratones , Humanos , Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
12.
Dermatology ; 240(3): 397-413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38588653

RESUMEN

BACKGROUND: Autosomal recessive congenital ichthyoses (ARCIs) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic, and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS: Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS: Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were as follows: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1, and SDR9C7 in 1 patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1- and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick, and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION: Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.


Asunto(s)
Eritrodermia Ictiosiforme Congénita , Ictiosis Lamelar , Lipasa , Mutación , Fenotipo , Índice de Severidad de la Enfermedad , Transglutaminasas , Humanos , Niño , Preescolar , Masculino , Femenino , Adolescente , Adulto , Adulto Joven , Lactante , Persona de Mediana Edad , Eritrodermia Ictiosiforme Congénita/genética , Eritrodermia Ictiosiforme Congénita/patología , Italia , Estudios Transversales , Ictiosis Lamelar/genética , Ictiosis Lamelar/patología , Transglutaminasas/genética , Lipasa/genética , Proteínas de la Membrana/genética , Transportadoras de Casetes de Unión a ATP/genética , Genotipo , Araquidonato 12-Lipooxigenasa/genética , Piel/patología , Piel/ultraestructura , Ictiosis/genética , Ictiosis/patología , Fosfolipasas , Receptores de Superficie Celular , Aciltransferasas , Esfingosina N-Aciltransferasa , Sistema Enzimático del Citocromo P-450 , Oxidorreductasas , Lipooxigenasa
13.
J Med Genet ; 60(9): 885-893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36788019

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Cerebelo/anomalías , Anomalías Múltiples/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Retina/anomalías
14.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37586838

RESUMEN

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/genética , Facies , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción , Neuroimagen
15.
Clin Immunol ; 251: 109316, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37055004

RESUMEN

Chronic granulomatous disease (CGD) is a human IEI caused by mutations in genes encoding the NADPH oxidase subunits, the enzyme responsible for the respiratory burst. CGD patients have severe life-threatening infections, hyperinflammation and immune dysregulation. Recently, an additional autosomal recessive AR-CGD (type 5) caused by mutations in CYBC1/EROS gene was identified. We report a AR-CGD5 patient with a novel loss of function (LOF) homozygous deletion c.8_7del in the CYBC1 gene including the initiation ATG codon that leads to failure of CYBC1/EROS protein expression and presenting with an unusual clinical manifestation of childhood-onset sarcoidosis-like disease requiring multiple immunosuppressive therapies. We described an abnormal gp91phox protein expression/function in the patient's neutrophils and monocytes (about 50%) and a severely compromised B cell subset (gp91phox < 15%; DHR+ < 4%). Our case-report emphasized the importance of considering a diagnosis of AR-CGD5 deficiency even in absence of typical clinical and laboratory findings.


Asunto(s)
Enfermedad Granulomatosa Crónica , Humanos , Femenino , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/diagnóstico , Homocigoto , Eliminación de Secuencia/genética , NADPH Oxidasas/genética , Mutación , Fenotipo
16.
Am J Hum Genet ; 107(3): 555-563, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32758449

RESUMEN

Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Trastorno del Espectro Autista/patología , Niño , Metilación de ADN/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Epigénesis Genética/genética , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Transcriptoma/genética
17.
Am J Hum Genet ; 107(6): 1170-1177, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33232677

RESUMEN

KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery.


Asunto(s)
Discapacidades del Desarrollo/genética , Variación Genética , Histona Demetilasas con Dominio de Jumonji/genética , Malformaciones del Sistema Nervioso/genética , Animales , Encéfalo/diagnóstico por imagen , Epigénesis Genética , Femenino , Heterocigoto , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Metilación , Ratones , Procesamiento Proteico-Postraduccional , Convulsiones/genética , Transducción de Señal
18.
Genet Med ; 25(10): 100927, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422718

RESUMEN

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Asunto(s)
Anomalías Craneofaciales , Hipospadias , Masculino , Humanos , Hipospadias/genética , Factores de Empalme de ARN/genética , Empalme del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transactivadores/genética , Proteínas de Unión al ARN/genética
19.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
20.
J Hum Genet ; 68(6): 437-443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36810639

RESUMEN

Among genodermatoses, trichothiodystrophies (TTDs) are a rare genetically heterogeneous group of syndromic conditions, presenting with skin, hair, and nail abnormalities. An extra-cutaneous involvement (craniofacial district and neurodevelopment) can be also a part of the clinical picture. The presence of photosensitivity describes three forms of TTDs: MIM#601675 (TTD1), MIM#616390 (TTD2) and MIM#616395 (TTD3), that are caused by variants afflicting some components of the DNA Nucleotide Excision Repair (NER) complex and with more marked clinical consequences. In the present research, 24 frontal images of paediatric patients with photosensitive TTDs suitable for facial analysis through the next-generation phenotyping (NGP) technology were obtained from the medical literature. The pictures were compared to age and sex-matched to unaffected controls using 2 distinct deep-learning algorithms: DeepGestalt and GestaltMatcher (Face2Gene, FDNA Inc., USA). To give further support to the observed results, a careful clinical revision was undertaken for each facial feature in paediatric patients with TTD1 or TTD2 or TTD3. Interestingly, a distinctive facial phenotype emerged by the NGP analysis delineating a specific craniofacial dysmorphic spectrum. In addition, we tabulated every single detail within the observed cohort. The novelty of the present research includes the facial characterization in children with the photosensitive types of TTDs through the 2 different algorithms. This result can become additional criteria for early diagnosis, and for subsequent targeted molecular investigations as well as a possible tailored multidisciplinary personalized management.


Asunto(s)
Trastornos por Fotosensibilidad , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Trastornos por Fotosensibilidad/diagnóstico , Trastornos por Fotosensibilidad/genética , Cara , Cabello , Fenotipo , Reparación del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA