Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Drug Metab Dispos ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852795

RESUMEN

Emvododstat is a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of COVID-19 and acute myeloid leukemia. Since the metabolism and pharmacokinetics of emvododstat in humans is time­dependent, a repeat dose study design using a combination of microtracer radioactivity and high radioactivity doses was employed to evaluate the metabolism and excretion of emvododstat near steady state. Seven healthy male subjects each received 16 mg/0.3 µCi 14C-emvododstat daily oral doses for 6 days followed by a 16 mg/100 µCi high radioactivity oral dose on Day 7. Following the last 16 mg/0.3 µCi 14C­emvododstat dose on Day 6, total radioactivity in plasma peaked at 6 h post-dose. Following a high radioactivity oral dose (16 mg/100 µCi) of 14C-emvododstat on Day 7, both whole blood and plasma radioactivity peaked at 6 h, rapidly declined from 6 h to 36 h post-dose, and decreased slowly thereafter with measurable radioactivity at 240 h post-dose. The mean cumulative recovery of the administered dose was 6.0% in urine and 19.9% in feces by 240 h post-dose, and the mean extrapolated recovery to infinity was 37.3% in urine and 56.6% in feces. Similar metabolite profiles were observed after repeat daily microtracer radioactivity oral dosing on Day 6 and after a high radioactivity oral dose on Day 7. Emvododstat was the most abundant circulating component, M443 and O-desmethyl emvododstat glucuronide were the major circulating metabolites; M474 was the most abundant metabolite in urine, while O­desmethyl emvododstat was the most abundant metabolite in feces. Significance Statement This study provides a complete set of the absorption, metabolism and excretion data of emvododstat, a potent inhibitor of dihydroorotate dehydrogenase, at close to steady state in healthy human subjects. Resolution of challenges due to slow metabolism and elimination of a lipophilic compound highlighted in this study can be achieved by repeat daily microtracer radioactivity oral dosing followed by a high radioactivity oral dosing at therapeutically relevant doses.

2.
Eur J Clin Pharmacol ; 79(8): 1073-1080, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37278823

RESUMEN

PURPOSE: A therapeutic agent that targets both viral replication and the hyper-reactive immune response would offer a highly desirable treatment for severe acute respiratory syndrome corona virus 2 (SARS-CoV-2, coronavirus disease 2019, COVID-19) management. Emvododstat (PTC299; 4-chlorophenyl 6-chloro-1-[4-methoxyphenyl]-1,3, 4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carboxylate) was found to be a potent inhibitor of immunomodulatory and inflammation-related processes by inhibition of dihydroorotate dehydrogenase to reduce the severity of SARS-CoV-2 infections This drug interaction study was performed to determine if emvododstat was an inhibitor of CYP2D6. METHODS: Potential drug-drug interactions between emvododstat and a CYP2D6 probe substrate (dextromethorphan) were investigated by measuring plasma dextromethorphan and metabolite (dextrorphan) concentrations before and after emvododstat administration. On day 1, 18 healthy subjects received an oral dose of 30 mg dextromethorphan followed by a 4-day washout period. On day 5, subjects received an oral dose of 250 mg emvododstat with food. Two hours later, 30 mg dextromethorphan was administered. RESULTS: When given with emvododstat, plasma dextromethorphan concentrations increased substantially, while metabolite levels (dextrorphan) remained essentially the same. Maximum plasma dextromethorphan concentration (Cmax) increased from 2006 to 5847 pg/mL. Dextromethorphan exposure (AUC) increased from 18,829 to 157,400 h·pg/mL for AUC0-last and from 21,585 to 362,107 h·pg/mL for AUC0-inf following administration of emvododstat. When dextromethorphan parameters were compared before and after emvododstat, least squares mean ratios (90% confidence interval) were found to be 2.9 (2.2, 3.8), 8.4 (6.1, 11.5), and 14.9 (10.0, 22.1) for Cmax, AUC0-last, and AUC0-inf, respectively. CONCLUSION: Emvododstat appears to be a strong CYP2D6 inhibitor. No drug-related treatment emergent adverse effects (TEAEs) were considered to be severe or serious. TRIAL REGISTRATION: EudraCT 2021-004626-29, 11 May 2021.


Asunto(s)
COVID-19 , Citocromo P-450 CYP2D6 , Humanos , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/farmacocinética , Dihidroorotato Deshidrogenasa , SARS-CoV-2 , Dextrorfano , Interacciones Farmacológicas
3.
Xenobiotica ; 52(2): 152-164, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34846990

RESUMEN

Emvododstat was identified as a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of acute myeloid leukaemia and COVID-19. The objective of this paper is to evaluate the metabolism, pharmacokinetics, and drug interaction potentials of emvododstat.Emvododstat showed high binding to plasma protein with minimal distribution into blood cells in mouse, rat, dog, monkey, and human whole blood.O-Demethylation followed by glucuronidation appeared to be the major metabolic pathway in rat, dog, monkey, and human hepatocytes. CYP2C8, 2C19, 2D6, and 3A4 were involved in O-desmethyl emvododstat metabolite formation. Both emvododstat and O-desmethyl emvododstat inhibited CYP2D6 activity and induced CYP expression to different extents in vitro.Emvododstat and O-desmethyl emvododstat inhibited BCRP transporter activity but did not inhibit bile salt transporters and other efflux or uptake transporters. Neither emvododstat nor O-desmethyl emvododstat was a substrate for common efflux or uptake transporters investigated.Emvododstat is bioavailable in mice, rats, dogs, and monkeys following a single oral dose. The absorption was generally slow with the mean plasma Tmax ranging from 2 to 5 h; plasma exposure of O-desmethyl emvododstat was lower in rodents, but relatively higher in dogs and monkeys.


Asunto(s)
COVID-19 , Microsomas Hepáticos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Carbamatos , Carbazoles , Dihidroorotato Deshidrogenasa , Perros , Interacciones Farmacológicas , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Microsomas Hepáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Ratas
4.
Clin Pharmacol Ther ; 115(3): 525-534, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38065572

RESUMEN

Clinical investigation of emvododstat for the treatment of solid tumors was halted after two patients who were heavily treated with other anticancer therapies experienced drug-induced liver failure. However, preclinical investigations supported that emvododstat at lower doses might be effective in treating acute myeloid leukemia (AML) and against severe acute respiratory syndrome-coronavirus 2 as a dihydroorotate dehydrogenase inhibitor. Therefore, a quantitative systems toxicology model, DILIsym, was used to predict liver safety of the proposed dosing of emvododstat in AML clinical trials. In vitro mechanistic toxicity data of emvododstat and its desmethyl metabolite were integrated with in vivo exposure within DILIsym to predict hepatotoxicity responses in a simulated human population. DILIsym simulations predicted alanine aminotransferase elevations observed in prior emvododstat clinical trials in patients with solid tumors, but not in the prospective AML clinical trial with the proposed dosing regimens. Exposure predictions based on physiologically-based pharmacokinetic modeling suggested that reduced doses of emvododstat would produce clinical exposures that would be efficacious to treat AML. In the AML clinical trial, only eight patients experienced aminotransferase elevations, all of which were mild (grade 1), all resolving within a short period of time, and no patient showed symptoms of hepatotoxicity, confirming the prospective prediction of liver safety. Overall, retrospective DILIsym simulations adequately predicted the liver safety liabilities of emvododstat in solid tumor trials and prospective simulations predicted the liver safety of reduced doses in an AML clinical trial. The modeling was critical to enabling regulatory approval to proceed with the AML clinical trial wherein the predicted liver safety was confirmed.


Asunto(s)
Carbamatos , Carbazoles , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Leucemia Mieloide Aguda , Humanos , Estudios Retrospectivos , Leucemia Mieloide Aguda/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
5.
J Clin Oncol ; 42(20): 2404-2414, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38684039

RESUMEN

PURPOSE: This multicenter, single-arm, open-label, phase Ib study was designed to determine the recommended phase II dose (RP2D) and to evaluate the safety and preliminary efficacy of unesbulin plus dacarbazine (DTIC) in patients with advanced leiomyosarcoma (LMS). PATIENTS AND METHODS: Adult subjects with locally advanced, unresectable or metastatic, relapsed or refractory LMS were treated with escalating doses of unesbulin orally twice per week in combination with DTIC 1,000 mg/m2 intravenously (IV) once every 21 days. The time-to-event continual reassessment method was used to determine the RP2D on the basis of dose-limiting toxicities (DLTs) assessed during the first two 21-day treatment cycles. All explored doses of unesbulin (200 mg up to 400 mg) were in combination with DTIC. An expansion cohort was enrolled to evaluate the safety and efficacy of unesbulin at the RP2D. RESULTS: Unesbulin 300 mg administered orally twice per week in combination with DTIC 1,000 mg/m2 IV once every 21 days was identified as the RP2D. On the basis of data from 27 subjects who were deemed DLT-evaluable, toxicity was higher in the unesbulin 400 mg group, with three of four subjects (75%) experiencing DLTs versus one of four subjects (25%) in the 200 mg group and three of 19 subjects (15.8%) in the 300 mg group. The most commonly reported DLTs and treatment-related grade 3 and 4 adverse events were thrombocytopenia and neutropenia. At the RP2D, seven subjects who were efficacy evaluable achieved partial response for an objective response rate of 24.1%. CONCLUSION: Unesbulin 300 mg twice per week plus DTIC 1,000 mg/m2 once every 21 days was identified as the RP2D, demonstrating a favorable benefit-risk profile in a heavily pretreated population of adults with advanced LMS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Dacarbazina , Leiomiosarcoma , Recurrencia Local de Neoplasia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/patología , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Adulto , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Metástasis de la Neoplasia
6.
Pharmacol Res Perspect ; 11(2): e01076, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36938928

RESUMEN

A therapeutic agent that targets both viral replication and the hyper-reactive immune response would offer a highly desirable treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) management. Emvododstat (PTC299) was found to be a potent inhibitor of immunomodulatory and inflammation-related processes by the inhibition of dihydroorotate dehydrogenase (DHODH) to reduce SARS-CoV-2 replication. DHODH is the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. This drug interaction study was performed to determine whether emvododstat was an inhibitor of breast cancer resistance protein (BCRP) transporters in humans. Potential drug-drug interactions (DDIs) between emvododstat and a BCRP transporter substrate (rosuvastatin) were investigated by measuring plasma rosuvastatin concentrations before and after emvododstat administration. There was no apparent difference in rosuvastatin plasma exposure. The geometric means of maximum plasma rosuvastatin concentrations (Cmax ) were 4369 (rosuvastatin) and 5141 pg/mL (rosuvastatin + emvododstat) at 4 h postdose. Geometric mean rosuvastatin area under the concentration-time curve (AUC) from time 0 to the last measurable plasma concentration was 45 616 and 48 975 h·pg/mL when administered alone and after 7 days of b.i.d. emvododstat dosing, respectively. Geometric least squares mean ratios for Cmax and AUC were approximately equal to 1. Overall, administration of multiple doses of 100 mg emvododstat b.i.d. for 7 days in combination with a single dose of rosuvastatin was safe and well tolerated. Emvododstat can be safely administered with other BCRP substrate drugs. Hence, pharmacokinetic DDI mediated via BCRP inhibition is not expected when emvododstat and BCRP substrates are coadministered.


Asunto(s)
COVID-19 , Dihidroorotato Deshidrogenasa , Humanos , Rosuvastatina Cálcica/farmacología , Rosuvastatina Cálcica/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , SARS-CoV-2 , Pirimidinas , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Interacciones Farmacológicas
7.
Clin Transl Sci ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129988

RESUMEN

Unesbulin is being investigated in combination with dacarbazine (DTIC) as a potential therapeutic agent in patients with advanced leiomyosarcoma (LMS). This paper reports the pharmacokinetics (PK) of unesbulin, DTIC, and its unreactive surrogate metabolite 5-aminoimidazole-4-carboxamide (AIC) in 29 patients with advanced LMS. Drug interactions between DTIC (and AIC) and unesbulin were evaluated. DTIC (1000 mg/m2 ) was administered to patients with LMS via 1-hour intravenous (IV) infusion on Day 1 of every 21-day (q21d) cycle. Unesbulin dispersible tablets were administered orally twice weekly (BIW), starting on Day 2 of every cycle, except for Cycle 2 (C2), where unesbulin was dosed either on Day 1 together with DTIC or on Day 2, 1 day after DTIC administration. The PK of DTIC, AIC, and unesbulin in Cycle 1 (C1) and C2 were estimated using noncompartmental analysis. DTIC and AIC were measurable immediately after the start of infusion and reached Cmax immediately or shortly after end of infusion at 1.0 and 1.4 hours (Tmax ), respectively. Coadministration of unesbulin orally at 200 mg or above with DTIC inhibited cytochrome P450 (CYP)1A2-mediated DTIC metabolism, resulting in 66.7% reduction of AIC exposures. Such inhibition could be mitigated when unesbulin was dosed the day following DTIC infusion. Repeated unesbulin dosing demonstrated evidence of clinical CYP1A2 induction and increased AIC Cmax by 69.4% and AUCinf by 57.9%. No meaningful difference in unesbulin PK was observed between C2 and C1. The combination therapy of 1000 mg/m2 IV DTIC q21d and 300 mg unesbulin BIW in a staggered regimen is well tolerated in patients with LMS.

8.
Front Oncol ; 12: 832816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223511

RESUMEN

Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.

9.
Clin Pharmacol Drug Dev ; 10(8): 940-949, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33440067

RESUMEN

PTC596 is a novel, orally bioavailable, small-molecule tubulin-binding agent that reduces B-cell-specific Moloney murine leukemia virus insertion site 1 activity and is being developed for the treatment of solid tumors. A phase 1, open-label, multiple-ascending-dose study was conducted to evaluate the pharmacokinetics and safety of the drug in subjects with advanced solid tumors. PTC596 was administered orally biweekly based on body weight. Dose escalation followed a modified 3 + 3 scheme using doses of 0.65, 1.3, 2.6, 5.2, 7.0, and 10.4 mg/kg. Following oral administration, PTC596 was rapidly absorbed, and between 0.65 and 7.0 mg/kg reached a maximum plasma concentration 2 to 4 hours after dosing. Area under the plasma concentration-time curve increased proportionally with body weight-adjusted doses. Maximum plasma concentration increased with dose, although the increase was less than dose proportional at dose levels >2.6 mg/kg. No accumulation occurred after multiple administrations up to 7.0 mg/kg. PTC596 had a terminal half-life ranging 12 to 15 hours at all doses except for the highest dose of 10.4 mg/kg, where the half-life was approximately 20 hours. Overall, PTC596 was well tolerated. The most frequently reported PTC596-related treatment-emergent adverse events were mild to moderate gastrointestinal symptoms, including diarrhea (54.8%), nausea (45.2%), vomiting (35.5%), and fatigue (35.5%). Only 1 patient treated with 10.4 mg/kg experienced dose-limiting toxicity of neutropenia and thrombocytopenia, both of which were reversible. Stable disease as best overall response was observed among 7 patients, with 2 patients receiving the study drug up to 16 weeks. These results support the further development of PTC596 for the treatment of solid tumors.


Asunto(s)
Bencimidazoles/administración & dosificación , Neoplasias/tratamiento farmacológico , Pirazinas/administración & dosificación , Administración Oral , Adulto , Anciano , Anciano de 80 o más Años , Bencimidazoles/efectos adversos , Bencimidazoles/farmacocinética , Esquema de Medicación , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Pirazinas/efectos adversos , Pirazinas/farmacocinética , Resultado del Tratamiento
10.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315764

RESUMEN

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Asunto(s)
Bencimidazoles/farmacología , Glioblastoma/tratamiento farmacológico , Leiomiosarcoma/tratamiento farmacológico , Pirazinas/farmacología , Moduladores de Tubulina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Bencimidazoles/farmacocinética , Proliferación Celular , Femenino , Glioblastoma/patología , Humanos , Leiomiosarcoma/patología , Masculino , Dosis Máxima Tolerada , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Pirazinas/farmacocinética , Distribución Tisular , Moduladores de Tubulina/farmacocinética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Virus Res ; 292: 198246, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33249060

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC50 range, 2.0-31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17 F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Asunto(s)
Antivirales/farmacología , Carbamatos/farmacología , Carbazoles/farmacología , Citocinas/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Citocinas/inmunología , Dihidroorotato Deshidrogenasa , Células HeLa , Humanos , Inflamación/tratamiento farmacológico , Inflamación/virología , Células Vero , Tratamiento Farmacológico de COVID-19
12.
bioRxiv ; 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32793904

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC 50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA