Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Cell ; 187(12): 3141-3160.e23, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38759650

RESUMEN

Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.


Asunto(s)
Caenorhabditis elegans , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen , Fenotipo
2.
Cell ; 165(2): 396-409, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27020753

RESUMEN

Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here, we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by the density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to the emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Redes y Vías Metabólicas , Oocitos/metabolismo , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Embrión no Mamífero/citología , Desarrollo Embrionario , Femenino , Cinesinas/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN
3.
EMBO Rep ; 25(6): 2698-2721, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744971

RESUMEN

Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Ciclo Celular , Centriolos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centriolos/metabolismo , Fosforilación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas
4.
Cell ; 145(3): 470-82, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529718

RESUMEN

High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.


Asunto(s)
Caenorhabditis elegans/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , Técnicas Genéticas , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Gónadas/embriología , Fenotipo
5.
Nature ; 585(7825): 440-446, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908304

RESUMEN

Centrosomes catalyse the formation of microtubules needed to assemble the mitotic spindle apparatus1. Centrosomes themselves duplicate once per cell cycle, in a process that is controlled by the serine/threonine protein kinase PLK4 (refs. 2,3). When PLK4 is chemically inhibited, cell division proceeds without centrosome duplication, generating centrosome-less cells that exhibit delayed, acentrosomal spindle assembly4. Whether PLK4 inhibitors can be leveraged as a treatment for cancer is not yet clear. Here we show that acentrosomal spindle assembly following PLK4 inhibition depends on levels of the centrosomal ubiquitin ligase TRIM37. Low TRIM37 levels accelerate acentrosomal spindle assembly and improve proliferation following PLK4 inhibition, whereas high TRIM37 levels inhibit acentrosomal spindle assembly, leading to mitotic failure and cessation of proliferation. The Chr17q region containing the TRIM37 gene is frequently amplified in neuroblastoma and in breast cancer5-8, rendering these cancer types highly sensitive to PLK4 inhibition. We find that inactivating TRIM37 improves acentrosomal mitosis because TRIM37 prevents PLK4 from self-assembling into centrosome-independent condensates that serve as ectopic microtubule-organizing centres. By contrast, elevated TRIM37 expression inhibits acentrosomal spindle assembly through a distinct mechanism that involves degradation of the centrosomal component CEP192. Thus, TRIM37 is an essential determinant of mitotic vulnerability to PLK4 inhibition. Linkage of TRIM37 to prevalent cancer-associated genomic changes-including 17q gain in neuroblastoma and 17q23 amplification in breast cancer-may offer an opportunity to use PLK4 inhibition to trigger selective mitotic failure and provide new avenues to treatments for these cancers.


Asunto(s)
Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Humanos Par 17/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Centro Organizador de los Microtúbulos/efectos de los fármacos , Centro Organizador de los Microtúbulos/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Sulfonas/farmacología , Sulfonas/uso terapéutico , Ubiquitina/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Annu Rev Cell Dev Biol ; 28: 29-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22804577

RESUMEN

Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.


Asunto(s)
Citocinesis , Anafase , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Transducción de Señal , Huso Acromático/metabolismo
7.
Genes Dev ; 31(11): 1089-1094, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698300

RESUMEN

Mitotic duration is determined by activation of the anaphase-promoting complex/cyclosome (APC/C) bound to its coactivator, Cdc20. Kinetochores, the microtubule-interacting machines on chromosomes, restrain mitotic exit when not attached to spindle microtubules by generating a Cdc20-containing complex that inhibits the APC/C. Here, we show that flux of Cdc20 through kinetochores also accelerates mitotic exit by promoting its dephosphorylation by kinetochore-localized protein phosphatase 1, which allows Cdc20 to activate the APC/C. Both APC/C activation and inhibition depend on Cdc20 fluxing through the same binding site at kinetochores. The microtubule attachment status of kinetochores therefore optimizes mitotic duration by controlling the balance between opposing Cdc20 fates.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/metabolismo , Cinetocoros/metabolismo , Activación Transcripcional , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas Cdc20/genética , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/metabolismo
8.
Cell ; 137(5): 926-37, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19490897

RESUMEN

Cytokinesis is accomplished by constriction of a cortical contractile ring. We show that during the early embryonic divisions in C. elegans, ring constriction occurs in two phases--an initial phase at a constant rate followed by a second phase during which the constriction rate decreases in proportion to ring perimeter. Cytokinesis completes in the same amount of time, despite the reduction in cell size during successive divisions, due to a strict proportionality between initial ring size and the constant constriction rate. During closure, the myosin motor in the ring decreases in proportion to perimeter without turning over. We propose a "contractile unit" model to explain how the ring retains a structural memory of its initial size as it disassembles. The scalability of constriction may facilitate coordination of mitotic events and cytokinesis when cell size, and hence the distance traversed by the ring, varies during embryogenesis and in other contexts.


Asunto(s)
Caenorhabditis elegans/citología , Citocinesis , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Caenorhabditis elegans/embriología , Tamaño de la Célula , Embrión no Mamífero/citología , Desarrollo Embrionario , Miosinas/metabolismo , Tiazolidinas/farmacología
9.
Development ; 146(7)2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30890570

RESUMEN

The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/embriología , Mesodermo/metabolismo
10.
Genes Dev ; 28(2): 121-6, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24449268

RESUMEN

The nuclear envelope is a subdomain of the endoplasmic reticulum (ER). Here we characterize CNEP-1 (CTD [C-terminal domain] nuclear envelope phosphatase-1), a nuclear envelope-enriched activator of the ER-associated phosphatidic acid phosphatase lipin that promotes synthesis of major membrane phospholipids over phosphatidylinositol (PI). CNEP-1 inhibition led to ectopic ER sheets in the vicinity of the nucleus that encased the nuclear envelope and interfered with nuclear envelope breakdown (NEBD) during cell division. Reducing PI synthesis suppressed these phenotypes, indicating that CNEP-1 spatially regulates phospholipid flux, biasing it away from PI production in the vicinity of the nuclear envelope to prevent excess ER sheet formation and NEBD defects.


Asunto(s)
Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Nuclear/metabolismo , Fosfolípidos/metabolismo , Animales , Caenorhabditis elegans/enzimología , Núcleo Celular/metabolismo , Embrión no Mamífero , Compuestos Orgánicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
11.
Development ; 144(14): 2694-2701, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619826

RESUMEN

Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Genes de Helminto , Técnicas Genéticas , Proteínas Fluorescentes Verdes/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular
12.
Development ; 143(1): 160-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26586219

RESUMEN

C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Células Epidérmicas , Microtúbulos/metabolismo , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Epidermis/metabolismo , Hemidesmosomas/metabolismo , Morfogénesis/fisiología , Proteínas Musculares/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares , Transporte de Proteínas/genética , Proteínas Qa-SNARE/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Tubulina (Proteína)/metabolismo
13.
Nature ; 484(7395): 534-7, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22495302

RESUMEN

Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length. Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically. Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.


Asunto(s)
Caenorhabditis elegans/genética , Centrómero/genética , Cromatina/genética , Células Germinativas/metabolismo , Transcripción Genética , Animales , Autoantígenos/metabolismo , Evolución Biológica , Caenorhabditis elegans/embriología , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Genoma de los Helmintos , Gónadas/citología , Gónadas/metabolismo , Organismos Hermafroditas , Masculino , Meiosis
14.
Genes Dev ; 24(9): 957-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20439434

RESUMEN

The spindle checkpoint generates a "wait anaphase" signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubule-attached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Silenciador del Gen/fisiología , Genes cdc/fisiología , Cinetocoros/metabolismo , Mutación Puntual/genética , Secuencias de Aminoácidos/genética , Proteínas de Ciclo Celular , Cromosomas/genética , Complejo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
15.
Genes Dev ; 23(17): 2046-59, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19656802

RESUMEN

Centrioles are subcellular organelles composed of a ninefold symmetric microtubule array that perform two important functions: (1) They build centrosomes that organize the microtubule cytoskeleton, and (2) they template cilia, microtubule-based projections with sensory and motile functions. We identified HYLS-1, a widely conserved protein, based on its direct interaction with the core centriolar protein SAS-4. HYLS-1 localization to centrioles requires SAS-4 and, like SAS-4, HYLS-1 is stably incorporated into the outer centriole wall. Unlike SAS-4, HYLS-1 is dispensable for centriole assembly and centrosome function in cell division. Instead, HYLS-1 plays an essential role in cilia formation that is conserved between Caenorhabditis elegans and vertebrates. A single amino acid change in human HYLS1 leads to a perinatal lethal disorder termed hydrolethalus syndrome, and we show that this mutation impairs HYLS-1 function in ciliogenesis. HYLS-1 is required for the apical targeting/anchoring of centrioles at the plasma membrane but not for the intraflagellar transport-dependent extension of the ciliary axoneme. These findings classify hydrolethalus syndrome as a severe human ciliopathy and shed light on the dual functionality of centrioles, defining the first stably incorporated centriolar protein that is not required for centriole assembly but instead confers on centrioles the capacity to initiate ciliogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Centriolos/metabolismo , Cilios/fisiología , Secuencia de Aminoácidos , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , División Celular , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Humanos , Datos de Secuencia Molecular , Mutación/genética , Neuronas/metabolismo , Transporte de Proteínas , Alineación de Secuencia , Factores de Transcripción/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
18.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547292

RESUMEN

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Asunto(s)
Proliferación Celular , Mitosis , Neoplasias , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina Tiolesterasa , Humanos , Proliferación Celular/genética , Inestabilidad Genómica , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Quinasa Tipo Polo 1/metabolismo , Antimitóticos/farmacología , Resistencia a Antineoplásicos
19.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578284

RESUMEN

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Asociadas a Microtúbulos , Proteínas Serina-Treonina Quinasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Repeticiones de Tetratricopéptidos , Proteínas Serina-Treonina Quinasas/metabolismo
20.
bioRxiv ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39416052

RESUMEN

Tightly controlled duplication of centrosomes, the major microtubule-organizing centers of animal cells, ensures bipolarity of the mitotic spindle and accurate chromosome segregation. The RBCC (RING-B-box-coiled coil) ubiquitin ligase TRIM37, whose loss is associated with elevated chromosome missegregation and the tumor-prone developmental human disorder Mulibrey nanism, prevents the formation of ectopic spindle poles that assemble around structured condensates containing the centrosomal protein centrobin. Here, we show that TRIM37's TRAF domain, unique in the extended TRIM family, engages peptide motifs in centrobin to suppress condensate formation. TRIM proteins form anti-parallel coiled-coil dimers with RING-B-box domains on each end. Oligomerization due to RING-RING interactions and conformational regulation by B-box-2-B-box-2 interfaces are critical for TRIM37 to suppress centrobin condensate formation. These results indicate that, analogous to anti-viral TRIM ligases, TRIM37 activation is linked to the detection of oligomerized substrates. Thus, TRIM37 couples peptide motif recognition and substrate-dependent oligomerization to effect ubiquitination-mediated clearance of ectopic centrosomal protein assemblies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA