Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 110(6): 1700-1716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403318

RESUMEN

Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name 'soluble silicome proteins' (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall.


Asunto(s)
Diatomeas , Biomineralización , Cromatografía Liquida , Diatomeas/metabolismo , Proteoma/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Espectrometría de Masas en Tándem
2.
Food Microbiol ; 103: 103958, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35082075

RESUMEN

The fermented beverage industry is always pursuing alternatives to make products that delight consumers with special or unique characteristics. The identification and improvement of new yeast strains emerge as an opportunity; however, wild strains usually have a limitation in maltose fermentation and/or off-flavors production. Here we report the production of a Blond-style ale beer using a bioethanol isolated strain (LBGA-287) with flavor complexity approved in sensorial panels. LBGA-287 also showed an increase in maltose consumption, growth and fermentation rates when compared to the commercial yeast. Using qPCR analysis, genes related to the (i) efficiency of fermentation (ii) production of aromas/off-flavors, and (iii) metabolization of carbohydrates were found as differentially expressed in the isolated strains when compared to industrial yeast. This suggests that LBGA-287 could have an important impact on beer production, improving brewing efficiency, quality and diversity of this beverage, and most importantly satisfying the final consumer.


Asunto(s)
Cerveza , Saccharomyces cerevisiae , Cerveza/análisis , Etanol/análisis , Fermentación , Bebidas Fermentadas , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA