Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 200(2): 181-186, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38038052

RESUMEN

With the increase of the number of interventional radiology (IVR) procedures, the occupational exposure of operators and medical staff has attracted keen attention. The energy of scattered radiation in medical clinical sites is important for estimating the biological effects of occupational exposure. Recent years have seen many reports on the dose of scattered radiation by IVR, but few on the energy spectrum. In this study, the energy spectrum of scattered X-rays was measured by using a cadmium telluride (CdTe) semiconductor detector during IVR on several neurosurgical and cardiovascular cases. The cumulated spectra in each case were compared. The spectra showed little changes among neurosurgical cases and relatively large changes among cardiovascular cases. This was assumed to be due to the change of X-ray tube voltage and tube angle was larger in cardiovascular cases. The resulting energy spectra will be essential for the assessment of detailed biological effects of occupational exposure.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Humanos , Rayos X , Telurio , Dosis de Radiación
2.
Sci Rep ; 9(1): 17649, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776470

RESUMEN

Radiation weighting factor wR for photons and electrons has been defined as unity independently of the energy of the particles. However, the biological effects depend on the incident energies according to in vitro experimental data. In this study, we have quantified the energy concentration along electron tracks in terms of dose-mean lineal energy (yD) on chromosome (micro-meter) and DNA (nano-meter) order scales by Monte Carlo simulations, and evaluated the impact of photon energies on DNA double-strand break (DNA-DSB) induction from an experimental study of irradiated cells. Our simulation result shows that the yD values for diagnostic X-rays (60-250 kVp) are higher than that for therapeutic X-rays (linac 6 MV), which agrees well with the tissue equivalent proportional counter (TEPC) measurements. The relation between the yD values and the numbers of γ-H2AX foci for various photon energy spectra suggests that low energy X-rays induce DNA-DSB more efficiently than higher energy X-rays even at the same absorbed dose (e.g., 1.0 Gy). The relative biological effectiveness based on DNA-DSBs number (RBEDSB) is proportionally enhanced as the yD value increases, demonstrating that the biological impact of the photon irradiation depends on energy concentration along radiation tracks of electrons produced in the bio-tissues. Ultimately, our study implies that the value of wR for photons varies depending on their energies.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Electrones , Transferencia Lineal de Energía , Rayos X , Simulación por Computador , Fotones , Efectividad Biológica Relativa
3.
Sci Rep ; 8(1): 8287, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844494

RESUMEN

During exposure to ionizing radiation, sub-lethal damage repair (SLDR) competes with DNA damage induction in cultured cells. By virtue of SLDR, cell survival increases with decrease of dose-rate, so-called dose-rate effects (DREs). Here, we focused on a wide dose-rate range and investigated the change of cell-cycle distribution during X-ray protracted exposure and dose-response curves via hybrid analysis with a combination of in vitro experiments and mathematical modelling. In the course of flow-cytometric cell-cycle analysis and clonogenic assays, we found the following responses in CHO-K1 cells: (1) The fraction of cells in S phase gradually increases during 6 h exposure at 3.0 Gy/h, which leads to radio-resistance. (2) Slight cell accumulation in S and G2/M phases is observed after exposure at 6.0 Gy/h for more than 10 hours. This suggests that an increase of SLDR rate for cells in S phase during irradiation may be a reproducible factor to describe changes in the dose-response curve at dose-rates of 3.0 and 6.0 Gy/h. By re-evaluating cell survival for various dose-rates of 0.186-60.0 Gy/h considering experimental-based DNA content and SLDR, it is suggested that the change of S phase fraction during irradiation modulates the dose-response curve and is possibly responsible for some inverse DREs.


Asunto(s)
Ciclo Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Animales , Células CHO/efectos de la radiación , División Celular , Cricetulus , Daño del ADN/efectos de la radiación , Modelos Biológicos , Radiación Ionizante , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA