Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Mater Sci Mater Med ; 35(1): 9, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285196

RESUMEN

The reconstruction of bony defects in the alveolar crest poses challenges in dental practice. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) procedures utilize barriers to promote bone regeneration and prevent epithelial growth. This study focuses on evaluating the antibacterial properties of marine algae-polylactic acid (PLA) composite membranes compared to commercially available collagen membranes. Marine algae (Corallina elongata, Galaxaura oblongata, Cystoseira compressa, Saragassum vulgare, and Stypopodium schimperi) were processed into powders and blended with PLA to fabricate composite membranes. Cytocompatibility assays using human periodontal ligament fibroblasts (n = 3) were performed to evaluate biocompatibility. Antibacterial effects were assessed through colony-forming units (CFU) and scanning electron microscopy (SEM) analysis of bacterial colonization on the membranes. The cytocompatibility assays demonstrated suitable biocompatibility of all marine algae-PLA composite membranes with human periodontal ligament fibroblasts. Antibacterial assessment revealed that Sargassum vulgare-PLA membranes exhibited the highest resistance to bacterial colonization, followed by Galaxaura oblongata-PLA and Cystoseira compressa-PLA membranes. SEM analysis confirmed these findings and revealed smooth surface textures for the marine algae-PLA membranes compared to the fibrous and porous structures of collagen membranes. Marine algae-PLA composite membranes show promising antibacterial properties and cytocompatibility for guided bone and tissue regeneration applications. Sargassum vulgare-PLA membranes demonstrated the highest resistance against bacterial colonization. These findings suggest that marine algae-PLA composite membranes could serve as effective biomaterials for infection control and tissue regeneration. Further in vivo validation and investigation of biodegradation properties are necessary to explore their clinical potential.


Asunto(s)
Colágeno , Poliésteres , Humanos , Proceso Alveolar , Antibacterianos/farmacología
2.
Chem Biodivers ; : e202400915, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989544

RESUMEN

In this comprehensive screening study, the chemical composition, and cytotoxic, antimicrobial, and anticholinergic activities of the green algae Penicillus capitatus, collected from Antalya-Türkiye, were determined as in vitro and in silico. GC-MS analysis of the hexane extract revealed a high content of fatty acids, with hexadecanoic acid constituting half of the total fatty acid content. LC-HRMS analysis of the DCM:MeOH extract identified ascorbic acid as the most abundant compound, followed by (-)-epigallocatechin and salicylic acid. The DCM:MeOH extract exhibited potent cytotoxicity against MDA-MB-231 and MCF7 breast cancer cell lines, outperforming doxorubicin with lower IC50 values and a higher selectivity index. Additionally, the extract demonstrated significant antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, along with selective inhibition of acetylcholinesterase (hAChE) over butyrylcholinesterase (hBChE). Molecular docking and dynamics studies revealed that apigenin-7-O-glucoside and epigallocatechin form stable interactions with estrogen receptor alpha (ERα) and hAChE, suggesting their potential as inhibitors. In silico ADME studies indicated favorable pharmacokinetic profiles for the detected compounds, supporting their potential as drug candidates. The promising cytotoxic activity of the P. capitatus extracts, coupled with significant antimicrobial properties and selective hAChE inhibition, highlights their therapeutic potential for breast cancer treatment, infection management, and neurodegenerative disease intervention.

4.
Z Naturforsch C J Biosci ; 78(7-8): 261-269, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36814174

RESUMEN

In this study, the fatty acid, carbohydrate, and mineral profiles and proximate composition of Halopteris scoparia, Padina pavonica, Zanardinia typus, Cladostephus spongiosum, Sargassum vulgare, and Sargassum acinarium brown macroalgae collected from Türkiye seas were determined. According to the results, the ash and total carbohydrate contents of all macroalgae ranged from 20.79 to 53.49% in dry weight (dw) and from 15.32 to 55.13% dw, respectively. Their protein, lipid and crude fiber contents changed between 4.22 and 9.89% dw, 0.25 and 0.90% dw, and 12.28 and 16.01% dw, respectively. Palmitic acid (29.36-48.55% dw) and oleic acid (8.92-20.92% dw) were at the highest levels in all brown macroalgae. In addition, they included prominent levels of saturated fatty acids (51.87-69.56% dw of total fatty acid content). Magnesium (6.97-18.78 mg/kg dw), potassium (1.34-3.78 mg/kg dw), iron (1.27-8.24 mg/kg dw), and manganese (63.10-252.23 µg/kg dw) were found to be the major minerals. The main soluble carbohydrates of macroalgae were found to be mannitol (1149.99-8676.31 mg/kg dw), glucose (368.78-1305.59 mg/kg dw), myo-inositol (225.96-956.78 mg/kg dw), fructose (137.05-689.21 mg/kg dw), and sucrose (189.55-328.06 mg/kg dw). This study revealed that brown macroalgae are particularly rich in potassium, magnesium, iron, manganese, and zinc and they may have potential for use in the food industry.


Asunto(s)
Phaeophyceae , Algas Marinas , Ácidos Grasos/metabolismo , Algas Marinas/metabolismo , Manganeso , Magnesio , Minerales/análisis , Carbohidratos , Hierro/metabolismo , Potasio/metabolismo
5.
ACS Omega ; 8(51): 48689-48703, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162757

RESUMEN

Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.

6.
RSC Adv ; 12(46): 29983-29990, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36321101

RESUMEN

Caulerpa cylindracea Sonder is a green alga belonging to the Caulerpaceae family. This is the first chemical investigation of C. cylindracea in the Dardanelles which resulted in the isolation of four compounds, caulerpin (1), monomethyl caulerpinate (2), beta-sitosterol (3), and palmitic acid (4). Their structures were elucidated by spectroscopic analyses including 1D- and 2D NMR and mass. The isolated compounds 1 and 2 were tested against the SARS-CoV-2 viral targets spike protein and main protease (3CL) enzyme, and both compounds significantly inhibit the interaction of spike protein and ACE2, while the main protease activity was not significantly reduced. Docking studies suggested that compounds 1 and 2 may bind to the ACE2 binding pocket on spike, and compound 2 may also bind to an allosteric site on spike. As such, these compounds may inhibit the spike-ACE2 complex formation competitively and/or allosterically and have the potential to be used against SARS-CoV-2 virus infection. In addition, compounds 1 and 2 showed at least two-fold higher cytotoxicity against breast cancer cell lines MCF7 and MDA-MB-231 compared to the CCD fibroblast control cell line.

7.
J Chromatogr Sci ; 59(4): 325-337, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33313763

RESUMEN

This study was carried out to determine the main pigments in some different selected seaweeds and to reveal their antioxidant potential regarding the ever-increasing demand for utilization of marine pigments in human health and nutrition. The individual amounts of algal pigments were found by reverse phase high-performance liquid chromatography (HPLC) and their total antioxidant capacities (TAC) by two spectrophotometric TAC assays, namely: CUPRAC (CUPric ion Reducing Antioxidant Capacity) and ABTS/TEAC (2,2'-azinobis [3-ethyl benzo thiazoline-6-sulfonate])/(trolox equivalent antioxidant capacity). These two tests gave the same rank order for TAC. The TAC of HPLC-quantified compounds accounted for a relatively much lower percentage of the observed CUPRAC capacities of seaweed extracts, namely ranging from 11 to 68% for brown, from 4 to 41% for red and from 3 to 100% for green species, i.e., some TAC originated from chromatographically unidentified compounds. Fucoxanthin, chlorophyll a, and pheophytin a compounds were major pigments in brown algae. The relative carotenoid contents in red marine algae were generally lower than those of chlorophylls. Overall total quantities were quite low compared with those of brown species. In general, chlorophyll a and chlorophyll b were chiefly present in green algae, but ß-carotene, violaxanthin and siphonaxanthin were also detected substantially higher in some species of green algae such as Caulerpa racemosa var. cylindracea and Codium fragile.


Asunto(s)
Antioxidantes/análisis , Chlorophyta/química , Phaeophyceae/química , Pigmentos Biológicos/química , Rhodophyta/química , Carotenoides/análisis , Clorofila/análisis , Cromatografía Líquida de Alta Presión/métodos , Modelos Lineales , Extractos Vegetales/química
8.
J Chromatogr Sci ; 58(2): 98-108, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31681954

RESUMEN

Analysis of plant growth regulators (PGRs) should be approached by considering their extremely low concentrations and serious interfering effects that result from the matrix of various plant tissues. In the current research, the separation and simultaneous determination of different classes of phytohormones in 14 seaweeds collected from Turkey seashores were achieved by using solid-phase extraction (SPE) followed by a rapid and sensitive liquid chromatography tandem mass detection method. OASIS HLB (Hydrophilic-Lipophilic Balance) cartridges were successfully used for SPE process to eliminate the matrix effect and enhance the PGRs including zeatin, benzyl amino purine, indole-3-acetic acid, abscisic acid and gibberellic acid within partially different polarities. Based on the optimized experimental conditions, the method presented excellent performance related to linearity (r, 0.9996-0.9999) within the ranges of 0.5-500 ng/mL, relative standard deviation values ((1.43-2.01) for intraday and (2.36-3.50) for interday)), the limit of detection (0.01-0.84 µg/L) and the limit of quantification (0.02-2.76 µg/L). The obtained results confirm that the SPE-liquid chromatography/tandem mass spectrometry method performed is highly effective and convenient for routine analyses of trace amounts of the tested phytohormones in seaweeds and any other plant samples as well.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Algas Marinas/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Límite de Detección , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA