Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ecol Monogr ; 93(1): e1551, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37035419

RESUMEN

Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.

2.
Ann Bot ; 131(4): 667-684, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36594263

RESUMEN

BACKGROUND AND AIMS: The Canary Islands have strong floristic affinities with the Mediterranean Basin. One of the most characteristic and diverse vegetation belts of the archipelago is the thermophilous woodland (between 200 and 900 m.a.s.l.). This thermophilous plant community consists of many non-endemic species shared with the Mediterranean Floristic Region together with Canarian endemic species. Consequently, phytogeographic studies have historically proposed the hypothesis of an origin of the Canarian thermophilous species following the establishment of the summer-dry mediterranean climate in the Mediterranean Basin around 2.8 million years ago. METHODS: Time-calibrated phylogenies for 39 plant groups including Canarian thermophilous species were primarily analysed to infer colonization times. In particular, we used 26 previously published phylogenies together with 13 new time-calibrated phylogenies (including newly generated plastid and nuclear DNA sequence data) to assess whether the time interval between stem and crown ages of Canarian thermophilous lineages postdates 2.8 Ma. For lineages postdating this time threshold, we additionally conducted ancestral area reconstructions to infer the potential source area for colonization. KEY RESULTS: A total of 43 Canarian thermophilous lineages were identified from 39 plant groups. Both mediterranean (16) and pre-mediterranean (9) plant lineages were found. However, we failed to determine the temporal origin for 18 lineages because a stem-crown time interval overlaps with the 2.8-Ma threshold. The spatial origin of thermophilous lineages was also heterogeneous, including ancestral areas from the Mediterranean Basin (nine) and other regions (six). CONCLUSIONS: Our findings reveal an unexpectedly heterogeneous origin of the Canarian thermophilous species in terms of colonization times and mainland source areas. A substantial proportion of the lineages arrived in the Canaries before the summer-dry climate was established in the Mediterranean Basin. The complex temporal and geographic origin of Canarian thermophilous species challenges the view of the Canary Islands (and Madeira) as a subregion within the Mediterranean Floristic Region.


Asunto(s)
Clima , Filogenia , España , Región Mediterránea
3.
Nature ; 542(7640): 223-227, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28135718

RESUMEN

Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant-pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management.


Asunto(s)
Biodiversidad , Polinización/fisiología , Altitud , Animales , Flores/fisiología , Frutas/fisiología , Especies Introducidas , Modelos Biológicos , Seychelles
4.
Am J Bot ; 106(4): 540-546, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30985925

RESUMEN

PREMISE OF THE STUDY: The characteristic scarcity of insects on remote oceanic islands has driven nonflower-specialized vertebrates to broaden their trophic niches and explore floral resources. From our previous studies in the Galápagos, we know that native insectivorous and frugivorous birds visit a wide range of entomophilous flowers and can also act as effective pollinators. Here, we tested whether opportunistic Galápagos birds show any preference for specific floral traits, and if so, this preference differs from that of insects. METHODS: Sixteen floral morphology and nectar traits of 26 native species were studied, as well as the frequency with which they are visited by birds and insects. Nonmetric multidimensional scaling (NMDS) was used to evaluate the distribution of flower traits values along two main dimensions and measure the similarity between the plants visited mostly by birds versus those by insects. KEY RESULTS: NMDS of floral traits resulted in two species groups: (1) bell-shaped, white flowers with wider corollas at nectary level and higher nectar volume, associated with high bird visitation rates; and (2) bowl and tubular-shaped flowers with narrower corollas at nectary level and lower nectar volume, associated with high insect visitation rates. CONCLUSIONS: Despite the divergence in floral trait preferences between opportunistic Galápagos birds and insects, bird-visited flowers display mixed traits not fitting the classical ornithophilous syndrome. This finding is compatible with the existence of a transitional or bet-hedging phenotype between insect and bird visitors and underscores the importance of coevolution and floral diversification in nonspecialized plant-visitor interactions.


Asunto(s)
Aves , Flores/anatomía & histología , Magnoliopsida , Animales , Ecuador , Insectos
5.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25632001

RESUMEN

Although species and their interactions in unison represent biodiversity and all the ecological and evolutionary processes associated with life, biotic interactions have, contrary to species, rarely been integrated into the concepts of spatial ß-diversity. Here, we examine ß-diversity of ecological networks by using pollination networks sampled across the Canary Islands. We show that adjacent and distant communities are more and less similar, respectively, in their composition of plants, pollinators and interactions than expected from random distributions. We further show that replacement of species is the major driver of interaction turnover and that this contribution increases with distance. Finally, we quantify that species-specific partner compositions (here called partner fidelity) deviate from random partner use, but vary as a result of ecological and geographical variables. In particular, breakdown of partner fidelity was facilitated by increasing geographical distance, changing abundances and changing linkage levels, but was not related to the geographical distribution of the species. This highlights the importance of space when comparing communities of interacting species and may stimulate a rethinking of the spatial interpretation of interaction networks. Moreover, geographical interaction dynamics and its causes are important in our efforts to anticipate effects of large-scale changes, such as anthropogenic disturbances.


Asunto(s)
Insectos/fisiología , Magnoliopsida/fisiología , Polinización , Animales , Biodiversidad , Ecosistema , Geografía , Islas , Especificidad de la Especie , Simbiosis
6.
J Anim Ecol ; 83(1): 306-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24107193

RESUMEN

Most plant-pollinator network studies are conducted at species level, whereas little is known about network patterns at the individual level. In fact, nodes in traditional species-based interaction networks are aggregates of individuals establishing the actual links observed in nature. Thus, emergent properties of interaction networks might be the result of mechanisms acting at the individual level. Pollen loads carried by insect flower visitors from two mountain communities were studied to construct pollen-transport networks. For the first time, these community-wide pollen-transport networks were downscaled from species-species (sp-sp) to individuals-species (i-sp) in order to explore specialization, network patterns and niche variation at both interacting levels. We used a null model approach to account for network size differences inherent to the downscaling process. Specifically, our objectives were (i) to investigate whether network structure changes with downscaling, (ii) to evaluate the incidence and magnitude of individual specialization in pollen use and (iii) to identify potential ecological factors influencing the observed degree of individual specialization. Network downscaling revealed a high specialization of pollinator individuals, which was masked and unexplored in sp-sp networks. The average number of interactions per node, connectance, interaction diversity and degree of nestedness decreased in i-sp networks, because generalized pollinator species were composed of specialized and idiosyncratic conspecific individuals. An analysis with 21 pollinator species representative of two communities showed that mean individual pollen resource niche was only c. 46% of the total species niche. The degree of individual specialization was associated with inter- and intraspecific overlap in pollen use, and it was higher for abundant than for rare species. Such niche heterogeneity depends on individual differences in foraging behaviour and likely has implications for community dynamics and species stability. Our findings highlight the importance of taking interindividual variation into account when studying higher-order structures such as interaction networks. We argue that exploring individual-based networks will improve our understanding of species-based networks and will enhance the link between network analysis, foraging theory and evolutionary biology.


Asunto(s)
Insectos/fisiología , Polen/fisiología , Polinización , Animales , Modelos Biológicos , Plantas/clasificación , Especificidad de la Especie
7.
Biol Lett ; 10(1): 20131000, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24402718

RESUMEN

In recent years, the analysis of interaction networks has grown popular as a framework to explore ecological processes and the relationships between community structure and its functioning. The field has rapidly grown from its infancy to a vibrant youth, as reflected in the variety and quality of the discussions held at the first international symposium on Ecological Networks in Coimbra-Portugal (23-25 October 2013). The meeting gathered 170 scientists from 22 countries, who presented data from a broad geographical range, and covering all stages of network analyses, from sampling strategies to effective ways of communicating results, presenting new analytical tools, incorporation of temporal and spatial dynamics, new applications and visualization tools.(1) During the meeting it became evident that while many of the caveats diagnosed in early network studies are successfully being tackled, new challenges arise, attesting to the health of the discipline.


Asunto(s)
Biodiversidad , Ecología , Portugal
8.
Proc Biol Sci ; 280(1750): 20122112, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23173203

RESUMEN

Alien plants are a growing threat to the Galápagos unique biota. We evaluated the impact of alien plants on eight seed dispersal networks from two islands of the archipelago. Nearly 10 000 intact seeds from 58 species were recovered from the droppings of 18 bird and reptile dispersers. The most dispersed invaders were Lantana camara, Rubus niveus and Psidium guajava, the latter two likely benefiting from an asynchronous fruit production with most native plants, which facilitate their consumption and spread. Lava lizards dispersed the seeds of 27 species, being the most important dispersers, followed by small ground finch, two mockingbirds, the giant tortoise and two insectivorous birds. Most animals dispersed alien seeds, but these formed a relatively small proportion of the interactions. Nevertheless, the integration of aliens was higher in the island that has been invaded for longest, suggesting a time-lag between alien plant introductions and their impacts on seed dispersal networks. Alien plants become more specialized with advancing invasion, favouring more simplified plant and disperser communities. However, only habitat type significantly affected the overall network structure. Alien plants were dispersed via two pathways: dry-fruited plants were preferentially dispersed by finches, while fleshy fruited species were mostly dispersed by other birds and reptiles.


Asunto(s)
Aves/fisiología , Cadena Alimentaria , Preferencias Alimentarias , Especies Introducidas , Reptiles/fisiología , Dispersión de Semillas , Animales , Dieta , Ecuador , Frutas/fisiología , Modelos Lineales , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año
9.
Proc Biol Sci ; 280(1758): 20123040, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23486435

RESUMEN

The unique biodiversity of most oceanic archipelagos is currently threatened by the introduction of alien species that can displace native biota, disrupt native ecological interactions, and profoundly affect community structure and stability. We investigated the threat of aliens on pollination networks in the species-rich lowlands of five Galápagos Islands. Twenty per cent of all species (60 plants and 220 pollinators) in the pooled network were aliens, being involved in 38 per cent of the interactions. Most aliens were insects, especially dipterans (36%), hymenopterans (30%) and lepidopterans (14%). These alien insects had more links than either endemic pollinators or non-endemic natives, some even acting as island hubs. Aliens linked mostly to generalized species, increasing nestedness and thus network stability. Moreover, they infiltrated all seven connected modules (determined by geographical and phylogenetic constraints) of the overall network, representing around 30 per cent of species in two of them. An astonishingly high proportion (38%) of connectors, which enhance network cohesiveness, was also alien. Results indicate that the structure of these emergent novel communities might become more resistant to certain type of disturbances (e.g. species loss), while being more vulnerable to others (e.g. spread of a disease). Such notable changes in network structure as invasions progress are expected to have important consequences for native biodiversity maintenance.


Asunto(s)
Biota , Insectos/fisiología , Magnoliopsida/fisiología , Polinización , Animales , Conservación de los Recursos Naturales , Clima Desértico , Ecuador , Especies Introducidas
10.
Ann Bot ; 110(7): 1489-501, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22691541

RESUMEN

BACKGROUND: Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. SCOPE: As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower-visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. CONCLUSIONS: Although breeding systems are known for <20 % of the flora, most species in our database were self-compatible. Moreover, the incidence of autogamy among endemics, non-endemic natives and alien species did not differ significantly, being high in all groups, which suggests that a poor pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination on the islands and our ability to predict the consequences of plant invasions for the natural ecosystems of the Galápagos.


Asunto(s)
Magnoliopsida/fisiología , Polinización , Animales , Evolución Biológica , Aves/fisiología , Cruzamiento , Escarabajos/fisiología , Dípteros/fisiología , Ecología , Ecuador , Flores/fisiología , Himenópteros/fisiología , Islas , Lepidópteros/fisiología , Reptiles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA