Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mem Cognit ; 48(2): 188-199, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939042

RESUMEN

Researchers often adjudicate between models of memory according to the models' ability to explain impaired patterns of performance (e.g., in amnesia). In contrast, evidence from special groups with enhanced memory is very rarely considered. Here, we explored how people with unusual perceptual experiences (synaesthesia) perform on various measures of memory and test how computational models of memory may account for their enhanced performance. We contrasted direct and indirect measures of memory (i.e., recognition memory, repetition priming, and fluency) in grapheme-colour synaesthetes and controls using a continuous identification with recognition (CID-R) paradigm. Synaesthetes outperformed controls on recognition memory and showed a different reaction-time pattern for identification. The data were most parsimoniously accounted for by a single-system computational model of the relationship between recognition and identification. Overall, the findings speak in favour of enhanced processing as an explanation for the memory advantage in synaesthesia. In general, our results show how synaesthesia can be used as an effective tool to study how individual differences in perception affect cognitive functions.


Asunto(s)
Percepción de Color/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Memoria Implícita/fisiología , Sinestesia/fisiopatología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lectura , Adulto Joven
2.
Neuroimage ; 146: 226-235, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864082

RESUMEN

Mind-wandering has a controversial relationship with cognitive control. Existing psychological evidence supports the hypothesis that episodes of mind-wandering reflect a failure to constrain thinking to task-relevant material, as well the apparently alternative view that control can facilitate the expression of self-generated mental content. We assessed whether this apparent contradiction arises because of a failure to consider differences in the types of thoughts that occur during mind-wandering, and in particular, the associated level of intentionality. Using multi-modal magnetic resonance imaging (MRI) analysis, we examined the cortical organisation that underlies inter-individual differences in descriptions of the spontaneous or deliberate nature of mind-wandering. Cortical thickness, as well as functional connectivity analyses, implicated regions relevant to cognitive control and regions of the default-mode network for individuals who reported high rates of deliberate mind-wandering. In contrast, higher reports of spontaneous mind-wandering were associated with cortical thinning in parietal and posterior temporal regions in the left hemisphere (which are important in the control of cognition and attention) as well as heightened connectivity between the intraparietal sulcus and a region that spanned limbic and default-mode regions in the ventral inferior frontal gyrus. Finally, we observed a dissociation in the thickness of the retrosplenial cortex/lingual gyrus, with higher reports of spontaneous mind-wandering being associated with thickening in the left hemisphere, and higher repots of deliberate mind-wandering with thinning in the right hemisphere. These results suggest that the intentionality of the mind-wandering state depends on integration between the control and default-mode networks, with more deliberation being associated with greater integration between these systems. We conclude that one reason why mind-wandering has a controversial relationship with control is because it depends on whether the thoughts emerge in a deliberate or spontaneous fashion.


Asunto(s)
Encéfalo/fisiología , Individualidad , Intención , Pensamiento/fisiología , Adulto , Encéfalo/anatomía & histología , Mapeo Encefálico , Femenino , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Humanos , Lóbulo Límbico/anatomía & histología , Lóbulo Límbico/fisiología , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiología , Adulto Joven
3.
Neuroimage ; 146: 804-813, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989844

RESUMEN

Impulsive behavior often occurs without forethought and can be driven by strong emotions or sudden impulses, leading to problems in cognition and behavior across a wide range of situations. Although neuroimaging studies have explored the neurocognitive indicators of impulsivity, the large-scale functional networks that contribute to different aspects of impulsive cognition remain unclear. In particular, we lack a coherent account of why impulsivity is associated with such a broad range of different psychological features. Here, we use resting state functional connectivity, acquired in two independent samples, to investigate the neural substrates underlying different aspects of self-reported impulsivity. Based on the involvement of the anterior cingulate cortex (ACC) in cognitive but also affective processes, five seed regions were placed along the caudal to rostral gradient of the ACC. We found that positive urgency was related to functional connectivity between subgenual ACC and bilateral parietal regions such as retrosplenial cortex potentially highlighting this connection as being important in the modulation of the non-prospective, hastiness - related aspects of impulsivity. Further, two impulsivity dimensions were associated with significant alterations in functional connectivity of the supragenual ACC: (i) lack of perseverance was positively correlated to connectivity with the bilateral dorsolateral prefrontal cortex and right inferior frontal gyrus and (ii) lack of premeditation was inversely associated with functional connectivity with clusters within bilateral occipital cortex. Further analysis revealed that these connectivity patterns overlapped with bilateral dorsolateral prefrontal and bilateral occipital regions of the multiple demand network, a large-scale neural system implicated in the general control of thought and action. Together these results demonstrate that different forms of impulsivity have different neural correlates, which are linked to the functional connectivity of a region of anterior cingulate cortex. This suggests that poor perseveration and premeditation might be linked to dysfunctions in how the rostral zone of the ACC interacts with the multiple demand network that allows cognition to proceed in a controlled way.


Asunto(s)
Giro del Cíngulo/fisiología , Conducta Impulsiva , Adulto , Encéfalo/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto Joven
4.
Brain Struct Funct ; 224(2): 925-935, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30547311

RESUMEN

Cortical connectivity conforms to a series of organizing principles that are common across species. Spatial proximity, similar cortical type, and similar connectional profile all constitute factors for determining the connectivity between cortical regions. We previously demonstrated another principle of connectivity that is closely related to the spatial layout of the cerebral cortex. Using functional connectivity from resting-state fMRI in the human cortex, we found that the further a region is located from primary cortex, the more distant are its functional connections with the other areas of the cortex. However, it remains unknown whether this relationship between cortical layout and connectivity extends to other primate species. Here, we investigated this relationship using both resting-state functional connectivity as well as gold-standard tract-tracing connectivity in the macaque monkey cortex. For both measures of connectivity, we found a gradient of connectivity distance extending between primary and frontoparietal regions. In the human cortex, the further a region is located from primary areas, the stronger its connections to distant portions of the cortex, with connectivity distance highest in frontal and parietal regions. The similarity between the human and macaque findings provides evidence for a phylogenetically conserved relationship between the spatial layout of cortical areas and connectivity.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Animales , Mapeo Encefálico , Macaca mulatta , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
5.
Sci Data ; 6: 180307, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747913

RESUMEN

The dataset enables exploration of higher-order cognitive faculties, self-generated mental experience, and personality features in relation to the intrinsic functional architecture of the brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI sequence and a hig h-resolution structural scan using a 3D MP2RAGE sequence. This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database.


Asunto(s)
Cognición , Conectoma , Personalidad , Atención , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Front Hum Neurosci ; 12: 399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405373

RESUMEN

Findings of average differences between females and males in the structure of specific brain regions are often interpreted as indicating that the typical male brain is different from the typical female brain. An alternative interpretation is that the brain types typical of females are also typical of males, and sex differences exist only in the frequency of rare brain types. Here we contrasted the two hypotheses by analyzing the structure of 2176 human brains using three analytical approaches. An anomaly detection analysis showed that brains from females are almost as likely to be classified as "normal male brains," as brains from males are, and vice versa. Unsupervised clustering algorithms revealed that common brain "types" are similarly common in females and in males and that a male and a female are almost as likely to have the same brain "type" as two females or two males are. Large sex differences were found only in the frequency of some rare brain "types." Last, supervised clustering algorithms revealed that the brain "type(s)" typical of one sex category in one sample could be typical of the other sex category in another sample. The present findings demonstrate that even when similarity and difference are defined mathematically, ignoring biological or functional relevance, sex category (i.e., whether one is female or male), is not a major predictor of the variability of human brain structure. Rather, the brain types typical of females are also typical of males, and vice versa, and large sex differences are found only in the prevalence of some rare brain types. We discuss the implications of these findings to studies of the structure and function of the human brain.

7.
Brain Struct Funct ; 222(5): 2173-2182, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27807628

RESUMEN

Connectivity between distant cortical areas is a valuable, yet costly feature of cortical organization and is predominantly found between regions of heteromodal association cortex. The recently proposed 'tethering hypothesis' describes the emergence of long-distance connections in association cortex as a function of their spatial separation from primary cortical regions. Here, we investigate this possibility by characterizing the distance between functionally connected areas along the cortical surface. We found a systematic relationship between an area's characteristic connectivity distance and its distance from primary cortical areas. Specifically, the further a region is located from primary sensorimotor regions, the more distant are its functional connections with other areas of the cortex. The measure of connectivity distance also captured major functional subdivisions of the cerebral cortex: unimodal, attention, and higher-order association regions. Our findings provide evidence for the anchoring role of primary cortical regions in establishing the spatial distribution of cortical properties that are related to functional specialization and differentiation.


Asunto(s)
Atención/fisiología , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Adolescente , Adulto , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA