Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121405

RESUMEN

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Asunto(s)
Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Cromatina/química , Inmunoprecipitación/métodos , Proteómica/métodos , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Biblioteca de Péptidos , Proteínas/química , Proteoma , Reproducibilidad de los Resultados
2.
Mol Cell Proteomics ; 15(3): 892-905, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26750096

RESUMEN

The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Técnicas de Cultivo de Célula/métodos , Neoplasias Esofágicas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Espectrometría de Masas/métodos , Proteoma/aislamiento & purificación , Proteómica/métodos , Secuencias de Aminoácidos , Benzamidas/farmacología , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Marcaje Isotópico , Lisina/metabolismo , Metilación , Proteoma/química , Pirrolidinas/farmacología , Especificidad por Sustrato
3.
EMBO Rep ; 16(10): 1334-57, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26265008

RESUMEN

In embryonic stem cells (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors regulating the ESC state is not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 ubiquitin ligase protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses, we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses in undifferentiated ESCs revealed that MKRN1 associates with RNA-binding proteins, and ensuing RIP-chip analysis determined that MKRN1 associates with mRNAs encoding functionally related proteins including proteins that function during cellular stress. Subsequent biological validation identified MKRN1 as a novel stress granule-resident protein, although MKRN1 is not required for stress granule formation, or survival of unstressed ESCs. Thus, our unbiased systems-level analyses support a role for the E3 ligase MKRN1 as a ribonucleoprotein within the ESC GRN.


Asunto(s)
Células Madre Embrionarias/fisiología , Redes Reguladoras de Genes/genética , Proteínas del Tejido Nervioso/genética , Ribonucleoproteínas/genética , Animales , Citoplasma/metabolismo , Genómica , Ratones , Proteínas del Tejido Nervioso/química , Proteómica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Biol Chem ; 290(22): 13641-53, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825497

RESUMEN

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Asunto(s)
Antineoplásicos/química , Benzamidas/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias/enzimología , Pirrolidinas/química , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Biología Computacional , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Histonas/química , Humanos , Espectrometría de Masas , Neoplasias/tratamiento farmacológico , Péptidos/química , Desnaturalización Proteica , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
5.
Mol Cell Proteomics ; 13(3): 679-700, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361864

RESUMEN

Multiple sclerosis is a chronic demyelinating disorder characterized by the infiltration of auto-reactive immune cells from the periphery into the central nervous system resulting in axonal injury and neuronal cell death. Experimental autoimmune encephalomyelitis represents the best characterized animal model as common clinical, histological, and immunological features are recapitulated. A label-free mass spectrometric proteomics approach was used to detect differences in protein abundance within specific fractions of disease-affected tissues including the soluble lysate derived from the spinal cord and membrane protein-enriched peripheral blood mononuclear cells. Tissues were harvested from actively induced experimental autoimmune encephalomyelitis mice and sham-induced ("vehicle" control) counterparts at the disease peak followed by subsequent analysis by nanoflow liquid chromatography tandem mass spectrometry. Relative protein quantitation was performed using both intensity- and fragmentation-based approaches. After statistical evaluation of the data, over 500 and 250 differentially abundant proteins were identified in the spinal cord and peripheral blood mononuclear cell data sets, respectively. More than half of these observations have not previously been linked to the disease. The biological significance of all candidate disease markers has been elucidated through rigorous literature searches, pathway analysis, and validation studies. Results from comprehensive targeted mass spectrometry analyses have confirmed the differential abundance of ∼ 200 candidate markers (≥ twofold dysregulated expression) at a 70% success rate. This study is, to our knowledge, the first to examine the cell-surface proteome of peripheral blood mononuclear cells in experimental autoimmune encephalomyelitis. These data provide a unique mechanistic insight into the dynamics of peripheral immune cell infiltration into CNS-privileged sites at a molecular level and has identified several candidate markers, which represent promising targets for future multiple sclerosis therapies. The mass spectrometry proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000255.


Asunto(s)
Membrana Celular/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas de la Membrana/metabolismo , Esclerosis Múltiple/metabolismo , Proteómica/métodos , Animales , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Western Blotting , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/líquido cefalorraquídeo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Leucocitos Mononucleares/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/líquido cefalorraquídeo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Péptidos/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/patología , Coloración y Etiquetado
6.
Mol Cell Proteomics ; 11(7): M111.016642, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22357554

RESUMEN

Bioactive molecules typically mediate their biological effects through direct physical association with one or more cellular proteins. The detection of drug-target interactions is therefore essential for the characterization of compound mechanism of action and off-target effects, but generic label-free approaches for detecting binding events in biological mixtures have remained elusive. Here, we report a method termed target identification by chromatographic co-elution (TICC) for routinely monitoring the interaction of drugs with cellular proteins under nearly physiological conditions in vitro based on simple liquid chromatographic separations of cell-free lysates. Correlative proteomic analysis of drug-bound protein fractions by shotgun sequencing is then performed to identify candidate target(s). The method is highly reproducible, does not require immobilization or derivatization of drug or protein, and is applicable to diverse natural products and synthetic compounds. The capability of TICC to detect known drug-protein target physical interactions (K(d) range: micromolar to nanomolar) is demonstrated both qualitatively and quantitatively. We subsequently used TICC to uncover the sterol biosynthetic enzyme Erg6p as a novel putative anti-fungal target. Furthermore, TICC identified Asc1 and Dak1, a core 40 S ribosomal protein that represses gene expression, and dihydroxyacetone kinase involved in stress adaptation, respectively, as novel yeast targets of a dopamine receptor agonist.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Metiltransferasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Sistema Libre de Células , Cromatografía Liquida , Agonistas de Dopamina/metabolismo , Escherichia coli , Proteínas Fúngicas/análisis , Proteínas de Unión al GTP/análisis , Células HeLa , Humanos , Ácidos Hidroxámicos/metabolismo , Indenos/metabolismo , Macrólidos/metabolismo , Espectrometría de Masas , Metotrexato/metabolismo , Metiltransferasas/análisis , Terapia Molecular Dirigida , Fosfotransferasas (Aceptor de Grupo Alcohol)/análisis , Unión Proteica , Proteómica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/análisis
7.
J Am Chem Soc ; 134(4): 2139-47, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22191645

RESUMEN

Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its "synthetic identity", are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct "biological identity". Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.


Asunto(s)
Proteínas Sanguíneas/química , Oro/química , Macrófagos/química , Nanopartículas del Metal/química , Adsorción , Oro/farmacocinética , Humanos , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Distribución Tisular
8.
Mol Cell Proteomics ; 9(11): 2460-73, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20467045

RESUMEN

Effective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance proteins. Here, we report a target-driven liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy for selectively examining the levels of multiple low abundance components of signaling pathways which are refractory to standard shotgun screening procedures and hence appear limited in current MS/MS repositories. Our stepwise approach consists of: (i) synthesizing microscale peptide arrays, including heavy isotope-labeled internal standards, for use as high quality references to (ii) build empirically validated high density LC-MS/MS detection assays with a retention time scheduling system that can be used to (iii) identify and quantify endogenous low abundance protein targets in complex biological mixtures with high accuracy by correlation to a spectral database using new software tools. The method offers a flexible, rapid, and cost-effective means for routine proteomic exploration of biological systems including "label-free" quantification, while minimizing spurious interferences. As proof-of-concept, we have examined the abundance of transcription factors and protein kinases mediating pluripotency and self-renewal in embryonic stem cell populations.


Asunto(s)
Cromatografía Liquida/métodos , Péptidos/química , Análisis por Matrices de Proteínas/métodos , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Ratones , Péptidos/síntesis química , Péptidos/genética , Proteómica/métodos
9.
Mol Cell Proteomics ; 9(5): 811-23, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20305087

RESUMEN

Protein complexes and protein-protein interactions are essential for almost all cellular processes. Here, we establish a mammalian affinity purification and lentiviral expression (MAPLE) system for characterizing the subunit compositions of protein complexes. The system is flexible (i.e. multiple N- and C-terminal tags and multiple promoters), is compatible with Gateway cloning, and incorporates a reference peptide. Its major advantage is that it permits efficient and stable delivery of affinity-tagged open reading frames into most mammalian cell types. We benchmarked MAPLE with a number of human protein complexes involved in transcription, including the RNA polymerase II-associated factor, negative elongation factor, positive transcription elongation factor b, SWI/SNF, and mixed lineage leukemia complexes. In addition, MAPLE was used to identify an interaction between the reprogramming factor Klf4 and the Swi/Snf chromatin remodeling complex in mouse embryonic stem cells. We show that the SWI/SNF catalytic subunit Smarca2/Brm is up-regulated during the process of induced pluripotency and demonstrate a role for the catalytic subunits of the SWI/SNF complex during somatic cell reprogramming. Our data suggest that the transcription factor Klf4 facilitates chromatin remodeling during reprogramming.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Lentivirus/metabolismo , Células Madre Pluripotentes/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Reprogramación Celular/genética , Cromatografía de Afinidad , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , Transcripción Genética
10.
Clin Cancer Res ; 24(23): 6028-6039, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30131386

RESUMEN

PURPOSE: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. EXPERIMENTAL DESIGN: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. RESULTS: Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. CONCLUSIONS: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.


Asunto(s)
Aminopiridinas/farmacología , Bencimidazoles/farmacología , Ciclo Celular , Metilación de ADN , Interferones/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Neurogenesis (Austin) ; 4(1): e1316888, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28596979

RESUMEN

Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.

12.
Stem Cell Reports ; 7(3): 454-470, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27546533

RESUMEN

Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Biomarcadores , Diferenciación Celular , Proliferación Celular , Supervivencia Celular/genética , Silenciador del Gen , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Metilación , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Retina/metabolismo , Factores de Transcripción/genética , Pez Cebra
13.
ACS Nano ; 8(6): 5515-26, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24797313

RESUMEN

A nanoparticle's physical and chemical properties at the time of cell contact will determine the ensuing cellular response. Aggregation and the formation of a protein corona in the extracellular environment will alter nanoparticle size, shape, and surface properties, giving it a "biological identity" that is distinct from its initial "synthetic identity". The biological identity of a nanoparticle depends on the composition of the surrounding biological environment and determines subsequent cellular interactions. When studying nanoparticle-cell interactions, previous studies have ignored the dynamic composition of the extracellular environment as cells deplete and secrete biomolecules in a process known as "conditioning". Here, we show that cell conditioning induces gold nanoparticle aggregation and changes the protein corona composition in a manner that depends on nanoparticle diameter, surface chemistry, and cell phenotype. The evolution of the biological identity in conditioned media enhances the cell membrane affinity, uptake, and retention of nanoparticles. These results show that dynamic extracellular environments can alter nanoparticle-cell interactions by modulating the biological identity. The effect of the dynamic nature of biological environments on the biological identity of nanoparticles must be considered to fully understand nano-bio interactions and prevent data misinterpretation.


Asunto(s)
Nanopartículas del Metal/química , Nanotecnología/métodos , Proteínas/química , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/química , Electroforesis en Gel de Poliacrilamida , Oro/química , Células HeLa , Humanos , Cinética , Espectrometría de Masas , Tamaño de la Partícula , Fenotipo , Unión Proteica , Propiedades de Superficie
14.
ACS Nano ; 8(3): 2439-55, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24517450

RESUMEN

Using quantitative models to predict the biological interactions of nanoparticles will accelerate the translation of nanotechnology. Here, we characterized the serum protein corona 'fingerprint' formed around a library of 105 surface-modified gold nanoparticles. Applying a bioinformatics-inspired approach, we developed a multivariate model that uses the protein corona fingerprint to predict cell association 50% more accurately than a model that uses parameters describing nanoparticle size, aggregation state, and surface charge. Our model implicates a set of hyaluronan-binding proteins as mediators of nanoparticle-cell interactions. This study establishes a framework for developing a comprehensive database of protein corona fingerprints and biological responses for multiple nanoparticle types. Such a database can be used to develop quantitative relationships that predict the biological responses to nanoparticles and will aid in uncovering the fundamental mechanisms of nano-bio interactions.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Oro/química , Oro/metabolismo , Nanopartículas del Metal , Plata/química , Plata/metabolismo , Línea Celular , Humanos , Nanotecnología , Tamaño de la Partícula , Unión Proteica
15.
Dev Cell ; 28(3): 282-94, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24462187

RESUMEN

During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain. Inhibition of BuGZ results in loss of both Bub3 and its binding partner Bub1 from KTs, reduction of Bub1-dependent phosphorylation of centromeric histone H2A, attenuation of KT-based Aurora B kinase activity, and lethal chromosome congression defects in cancer cells. Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among eukaryotes, but are conspicuously absent from budding and fission yeasts. These findings suggest that BuGZ has evolved to facilitate Bub3 activity and chromosome congression in higher eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromosomas Humanos/genética , Glioblastoma/patología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/fisiología , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Aurora Quinasa B/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Immunoblotting , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/fisiología , Datos de Secuencia Molecular , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosforilación , Filogenia , Proteínas de Unión a Poli-ADP-Ribosa , Estabilidad Proteica , ARN Interferente Pequeño/genética , Homología de Secuencia de Aminoácido
16.
Dev Cell ; 30(2): 177-91, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25073155

RESUMEN

Intergenic transcription within repetitive loci such as the ribosomal DNA (rDNA) repeats of yeast commonly triggers aberrant recombination. Major mechanisms suppressing aberrant rDNA recombination rely on chromatin silencing or RNAPII repression at intergenic spacers within the repeats. We find ancient processes operating at rDNA intergenic spacers and other loci to maintain genome stability via repression of RNA-DNA hybrids. The yeast Ataxin-2 protein Pbp1 binds noncoding RNA, suppresses RNA-DNA hybrids, and prevents aberrant rDNA recombination. Repression of RNA-DNA hybrids in Pbp1-deficient cells through RNaseH overexpression, deletion of the G4DNA-stabilizing Stm1, or caloric restriction operating via RNaseH/Pif1 restores rDNA stability. Pbp1 also limits hybrids at non-rDNA G4DNA loci including telomeres. Moreover, cells lacking Pbp1 have a short replicative lifespan that is extended upon hybrid suppression. Thus, we find roles for Pbp1 in genome maintenance and reveal that caloric restriction counteracts Pbp1 deficiencies by engaging RNaseH and Pif1.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN de Hongos/genética , Genoma Fúngico , Inestabilidad Genómica , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , G-Cuádruplex , Unión Proteica , ARN no Traducido/genética , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
17.
Cell Rep ; 8(1): 297-310, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24981860

RESUMEN

Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Segregación Cromosómica , Histona Demetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Unión Proteica
18.
Nat Struct Mol Biol ; 21(8): 686-695, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997600

RESUMEN

The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Neoplasias/química , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Serina/química
19.
Methods Mol Biol ; 781: 31-45, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21877275

RESUMEN

Protein complexes and protein-protein interactions (PPIs) are fundamental for most biological functions. Deciphering the extensive protein interaction networks that occur within cellular contexts has become a logical extension to the human genome project. Proteome-scale interactome analysis of mammalian systems requires efficient methods for accurately detecting PPIs with specific considerations for the intrinsic technical challenges of mammalian genome manipulation. In this chapter, we outline in detail an innovative lentiviral-based functional proteomic approach that can be used to rapidly characterize protein complexes from a broad range of mammalian cell lines. This method integrates the following key features: (1) lentiviral elements for efficient delivery of tagged constructs into mammalian cell lines; (2) site-specific Gateway™ recombination sites for easy cloning; (3) versatile epitope-tagging system for flexible affinity purification strategies; and (4) LC-MS-based protein identification using tandem mass spectrometry.


Asunto(s)
Lentivirus/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteínas/análisis , Proteómica/métodos , Animales , Línea Celular , Cromatografía de Afinidad , Clonación Molecular , Células HEK293 , Humanos , Unión Proteica , Proteínas/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem
20.
Dev Cell ; 20(6): 867-79, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21664583

RESUMEN

Heterochromatin, or silent chromatin, preferentially resides at the nuclear envelope. Telomeres and rDNA repeats are the two major perinuclear silent chromatin domains of Saccharomyces cerevisiae. The Cohibin protein complex maintains rDNA repeat stability in part through silent chromatin assembly and perinuclear rDNA anchoring. We report here a role for Cohibin at telomeres and show that functions of the complex at chromosome ends and rDNA maintain replicative life span. Cohibin binds LEM/SUN domain-containing nuclear envelope proteins and telomere-associated factors. Disruption of Cohibin or the envelope proteins abrogates telomere localization and silent chromatin assembly within subtelomeres. Loss of Cohibin limits Sir2 histone deacetylase localization to chromosome ends, disrupts subtelomeric DNA stability, and shortens life span even when rDNA repeats are stabilized. Restoring telomeric Sir2 concentration abolishes chromatin and life span defects linked to the loss of telomeric Cohibin. Our work uncovers roles for Cohibin complexes and reveals relationships between nuclear compartmentalization, chromosome stability, and aging.


Asunto(s)
Heterocromatina/genética , Longevidad , Membrana Nuclear/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Telómero/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA