Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(23): 3954-3969, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625562

RESUMEN

Genetics is a significant factor contributing to congenital heart disease (CHD), but our understanding of the genetic players and networks involved in CHD pathogenesis is limited. Here, we searched for de novo copy number variations (CNVs) in a cohort of 167 CHD patients to identify DNA segments containing potential pathogenic genes. Our search focused on new candidate disease genes within 19 deleted de novo CNVs, which did not cover known CHD genes. For this study, we developed an integrated high-throughput phenotypical platform to probe for defects in cardiogenesis and cardiac output in human induced pluripotent stem cell (iPSC)-derived multipotent cardiac progenitor (MCPs) cells and, in parallel, in the Drosophila in vivo heart model. Notably, knockdown (KD) in MCPs of RPL13, a ribosomal gene and SON, an RNA splicing cofactor, reduced proliferation and differentiation of cardiomyocytes, while increasing fibroblasts. In the fly, heart-specific RpL13 KD, predominantly at embryonic stages, resulted in a striking 'no heart' phenotype. KD of Son and Pdss2, among others, caused structural and functional defects, including reduced or abolished contractility, respectively. In summary, using a combination of human genetics and cardiac model systems, we identified new genes as candidates for causing human CHD, with particular emphasis on ribosomal genes, such as RPL13. This powerful, novel approach of combining cardiac phenotyping in human MCPs and in the in vivo Drosophila heart at high throughput will allow for testing large numbers of CHD candidates, based on patient genomic data, and for building upon existing genetic networks involved in heart development and disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cardiopatías Congénitas/genética , Miocardio/citología , Proteínas de Neoplasias/genética , Proteínas Ribosómicas/genética , Animales , Células Cultivadas , Estudios de Cohortes , Modelos Animales de Enfermedad , Drosophila , Femenino , Redes Reguladoras de Genes , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Estudios Retrospectivos
2.
Int J Mol Sci ; 22(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071043

RESUMEN

A de novo missense variant in Rag GTPase protein C (RagCS75Y) was recently identified in a syndromic dilated cardiomyopathy (DCM) patient. However, its pathogenicity and the related therapeutic strategy remain unclear. We generated a zebrafish RragcS56Y (corresponding to human RagCS75Y) knock-in (KI) line via TALEN technology. The KI fish manifested cardiomyopathy-like phenotypes and poor survival. Overexpression of RagCS75Y via adenovirus infection also led to increased cell size and fetal gene reprogramming in neonatal rat ventricle cardiomyocytes (NRVCMs), indicating a conserved mechanism. Further characterization identified aberrant mammalian target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) signaling, as well as metabolic abnormalities including dysregulated autophagy. However, mTOR inhibition failed to ameliorate cardiac phenotypes in the RagCS75Y cardiomyopathy models, concomitant with a failure to promote TFEB nuclear translocation. This observation was at least partially explained by increased and mTOR-independent physical interaction between RagCS75Y and TFEB in the cytosol. Importantly, TFEB overexpression resulted in more nuclear TFEB and rescued cardiomyopathy phenotypes. These findings suggest that S75Y is a pathogenic gain-of-function mutation in RagC that leads to cardiomyopathy. A primary pathological step of RagCS75Y cardiomyopathy is defective mTOR-TFEB signaling, which can be corrected by TFEB overexpression, but not mTOR inhibition.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Cardiomiopatía Dilatada/genética , Mutación con Ganancia de Función , Proteínas de Unión al GTP Monoméricas/genética , Mutación Missense , Mutación Puntual , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos , Animales , Autofagia , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Cardiomiopatía Dilatada/terapia , Células Cultivadas , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Ventrículos Cardíacos/citología , Humanos , Ratones , Proteínas de Unión al GTP Monoméricas/fisiología , Miocitos Cardíacos/metabolismo , Fenotipo , Ratas Wistar , Proteínas Recombinantes/metabolismo , Transducción de Señal , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
3.
Hum Mol Genet ; 26(15): 2874-2881, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472305

RESUMEN

Non-ischemic dilated cardiomyopathy (DCM) has been recognized as a heritable disorder for over 25 years, yet clinical genetic testing is non-diagnostic in >50% of patients, underscoring the ongoing need for DCM gene discovery. Here, whole exome sequencing uncovered a novel molecular basis for idiopathic end-stage heart failure in two sisters who underwent cardiac transplantation at three years of age. Compound heterozygous recessive mutations in TAF1A, encoding an RNA polymerase I complex protein, were associated with marked fibrosis of explanted hearts and gene-specific nucleolar segregation defects in cardiomyocytes, indicative of impaired ribosomal RNA synthesis. Knockout of the homologous gene in zebrafish recapitulated a heart failure phenotype with pericardial edema, decreased ventricular systolic function, and embryonic mortality. These findings expand the clinical spectrum of ribosomopathies to include pediatric DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Animales , Niño , Preescolar , Exoma , Femenino , Fibrosis/genética , Pruebas Genéticas , Insuficiencia Cardíaca , Heterocigoto , Humanos , Masculino , Mutación , Mutación Missense/genética , Miocitos Cardíacos/metabolismo , Linaje , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Hermanos , Secuenciación del Exoma , Pez Cebra/genética
4.
Pediatr Rev ; 40(7): 344-353, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31263042

RESUMEN

Hypoplastic left heart syndrome is one of the most complex congenital heart diseases and requires several cardiac surgeries for survival. The diagnosis is usually established prenatally or shortly after birth. Each stage of surgery poses a unique hemodynamic situation that requires deeper understanding to manage common pediatric problems such as dehydration and respiratory infections. Careful multidisciplinary involvement in the care of these complex patients is improving their outcome; however, morbidity and mortality are still substantial. In this review, we focus on the hemodynamic aspects of various surgical stages that a primary care provider should know to manage these challenging patients.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/métodos , Síndrome del Corazón Izquierdo Hipoplásico , Deshidratación/etiología , Discapacidades del Desarrollo/etiología , Procedimiento de Fontan , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/complicaciones , Síndrome del Corazón Izquierdo Hipoplásico/diagnóstico , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Lactante , Cuidados Paliativos/métodos , Atención Primaria de Salud , Infecciones del Sistema Respiratorio/etiología
5.
Genet Epidemiol ; 41(4): 297-308, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28211093

RESUMEN

Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results.


Asunto(s)
Algoritmos , Estudios de Asociación Genética/métodos , Variación Genética , Simulación por Computador , Humanos , Modelos Genéticos , Tamaño de la Muestra , Estadísticas no Paramétricas
6.
Hum Mol Genet ; 25(2): 254-65, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604136

RESUMEN

Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 (RBM20), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20-dependent splice variants affected sarcomeric (TTN and LDB3) and calcium (Ca(2+)) handling (CAMK2D and CACNA1C) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length (RBM20: 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P < 0.0001) and decreased sarcomeric width (RBM20: 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P < 0.0001). Additionally, CMs showed defective Ca(2+) handling machinery with prolonged Ca(2+) levels in the cytoplasm as measured by greater area under the curve (RBM20: 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P < 0.05) and higher Ca(2+) spike amplitude (RBM20: 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P < 0.05). ß-adrenergic stress induced with 10 µm norepinephrine demonstrated increased susceptibility to sarcomeric disorganization (RBM20: 86 ± 10.5% versus control: 40 ± 7%; P < 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool to dissect disease-relevant defects in RBM20 splicing as a global regulator of heart function.


Asunto(s)
Cardiomiopatía Dilatada/genética , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Adulto , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Diferenciación Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Ratones , Modelos Biológicos , Mutación Missense , Linaje , Empalme del ARN/genética , Transcriptoma , Adulto Joven
7.
Genet Epidemiol ; 40(6): 461-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27312771

RESUMEN

Rare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional single-marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burden-type approaches attempt to identify aggregation of RVs across case-control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for large-scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathway-level RV analysis results from a prostate cancer (PC) risk case-control sequencing study. Finally, we discuss potential extensions and future directions of this work.


Asunto(s)
Modelos Genéticos , Teorema de Bayes , Estudios de Casos y Controles , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
10.
Hum Mol Genet ; 23(14): 3779-91, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24584570

RESUMEN

Dilated cardiomyopathy (DCM) due to mutations in RBM20, a gene encoding an RNA-binding protein, is associated with high familial penetrance, risk of progressive heart failure and sudden death. Although genetic investigations and physiological models have established the linkage of RBM20 with early-onset DCM, the underlying basis of cellular and molecular dysfunction is undetermined. Modeling human genetics using a high-throughput pluripotent stem cell platform was herein designed to pinpoint the initial transcriptome dysfunction and mechanistic corruption in disease pathogenesis. Tnnt2-pGreenZeo pluripotent stem cells were engineered to knockdown Rbm20 (shRbm20) to determine the cardiac-pathogenic phenotype during cardiac differentiation. Intracellular Ca(2+) transients revealed Rbm20-dependent alteration in Ca(2+) handling, coinciding with known pathological splice variants of Titin and Camk2d genes by Day 24 of cardiogenesis. Ultrastructural analysis demonstrated elongated and thinner sarcomeres in the absence of Rbm20 that is consistent with human cardiac biopsy samples. Furthermore, Rbm20-depleted transcriptional profiling at Day 12 identified Rbm20-dependent dysregulation with 76% of differentially expressed genes linked to known cardiac pathology ranging from primordial Nkx2.5 to mature cardiac Tnnt2 as the initial molecular aberrations. Notably, downstream consequences of Rbm20-depletion at Day 24 of differentiation demonstrated significant dysregulation of extracellular matrix components such as the anomalous overexpression of the Vtn gene. By using the pluripotent stem cell platform to model human cardiac disease according to a stage-specific cardiogenic roadmap, we established a new paradigm of familial DCM pathogenesis as a developmental disorder that is patterned during early cardiogenesis and propagated with cellular mechanisms of pathological cardiac remodeling.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Dilatada/etiología , Corazón/crecimiento & desarrollo , Proteínas de Unión al ARN/metabolismo , Sarcómeros/patología , Animales , Cardiomiopatía Dilatada/patología , Diferenciación Celular , Línea Celular , Cuerpos Embrioides/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Empalme del ARN , Sarcómeros/ultraestructura
11.
Hum Mol Genet ; 23(21): 5793-804, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24925317

RESUMEN

Locus mapping has uncovered diverse etiologies for familial atrial fibrillation (AF), dilated cardiomyopathy (DCM), and mixed cardiac phenotype syndromes, yet the molecular basis for these disorders remains idiopathic in most cases. Whole-exome sequencing (WES) provides a powerful new tool for familial disease gene discovery. Here, synergistic application of these genomic strategies identified the pathogenic mutation in a familial syndrome of atrial tachyarrhythmia, conduction system disease (CSD), and DCM vulnerability. Seven members of a three-generation family exhibited the variably expressed phenotype, three of whom manifested CSD and clinically significant arrhythmia in childhood. Genome-wide linkage analysis mapped two equally plausible loci to chromosomes 1p3 and 13q12. Variants from WES of two affected cousins were filtered for rare, predicted-deleterious, positional variants, revealing an unreported heterozygous missense mutation disrupting the highly conserved kinase domain in TNNI3K. The G526D substitution in troponin I interacting kinase, with the most deleterious SIFT and Polyphen2 scores possible, resulted in abnormal peptide aggregation in vitro and in silico docking models predicted altered yet energetically favorable wild-type mutant dimerization. Ventricular tissue from a mutation carrier displayed histopathological hallmarks of DCM and reduced TNNI3K protein staining with unique amorphous nuclear and sarcoplasmic inclusions. In conclusion, mutation of TNNI3K, encoding a heart-specific kinase previously shown to modulate cardiac conduction and myocardial function in mice, underlies a familial syndrome of electrical and myopathic heart disease. The identified substitution causes a TNNI3K aggregation defect and protein deficiency, implicating a dominant-negative loss of function disease mechanism.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatía Dilatada/genética , Estudios de Asociación Genética , Sistema de Conducción Cardíaco/anomalías , Quinasas Quinasa Quinasa PAM/genética , Mutación , Taquicardia Atrial Ectópica/genética , Adulto , Secuencia de Aminoácidos , Arritmias Cardíacas/diagnóstico , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/metabolismo , Niño , Mapeo Cromosómico , Cromosomas Humanos Par 1 , Secuencia Conservada , Exoma , Femenino , Sitios Genéticos , Variación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Compuestos Orgánicos , Linaje , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Alineación de Secuencia , Síndrome , Taquicardia Atrial Ectópica/diagnóstico
12.
Hum Genet ; 135(8): 909-917, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27234373

RESUMEN

Idiopathic dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder with variable age-dependent penetrance. We sought to identify the genetic underpinnings of syndromic, sporadic DCM in a newborn female diagnosed in utero. Postnatal evaluation revealed ventricular dilation and systolic dysfunction, bilateral cataracts, and mild facial dysmorphisms. Comprehensive metabolic and genetic testing, including chromosomal microarray, mitochondrial DNA and targeted RASopathy gene sequencing, and clinical whole exome sequencing for known cardiomyopathy genes was non-diagnostic. Following exclusion of asymptomatic DCM in the parents, trio-based whole exome sequencing was carried out on a research basis, filtering for rare, predicted deleterious de novo and recessive variants. An unreported de novo S75Y mutation was discovered in RRAGC, encoding Ras-related GTP binding C, an essential GTPase in nutrient-activated mechanistic target of rapamycin complex 1 (mTORC1) signaling. In silico protein modeling and molecular dynamics simulation predicted the mutation to disrupt ligand interactions and increase the GDP-bound state. Overexpression of RagC(S75Y) rendered AD293 cells partially insensitive to amino acid deprivation, resulting in increased mTORC1 signaling compared to wild-type RagC. These findings implicate mTORC1 dysregulation through a gain-of-function mutation in RagC as a novel molecular basis for syndromic forms of pediatric heart failure, and expand genotype-phenotype correlation in RASopathy-related syndromes.


Asunto(s)
Cardiomiopatía Dilatada/genética , Heterogeneidad Genética , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/genética , Serina-Treonina Quinasas TOR/genética , Factores de Edad , Cardiomiopatía Dilatada/fisiopatología , Exoma/genética , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/biosíntesis , Mutación Missense , Linaje
13.
Am J Physiol Heart Circ Physiol ; 310(2): H269-78, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26608339

RESUMEN

We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to ß-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis.


Asunto(s)
Corazón/fisiopatología , Proteínas Musculares/metabolismo , Actinas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Fenómenos Biomecánicos , Cardiomegalia/fisiopatología , Fibrosis/patología , Cardiopatías/patología , Histidina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Contracción Miocárdica/genética , Miocitos Cardíacos/patología , Presión , Estrés Fisiológico , Función Ventricular/efectos de los fármacos
14.
Am J Med Genet A ; 170(8): 2186-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177193

RESUMEN

Ebstein anomaly of the tricuspid valve (EA) can be associated with left ventricular non-compaction (LVNC), a rare congenital cardiomyopathy. We report a 2 year-old female with EA and severe tricuspid regurgitation, LVNC, pulmonary hypertension, and chronic biventricular systolic heart failure, who died during evaluation for cardiac transplantation. Gene panel testing revealed a heterozygous de novo missense mutation in TPM1, which encodes the cardiac sarcomeric thin filament protein α-tropomyosin. The c.475G>A variant results in a p.Asp159Asn substitution, altering a highly conserved residue predicted to be damaging to protein structure and function. TPM1 is the second gene linked to EA with LVNC in humans, implicating overlap in the molecular basis of structural and myopathic heart disease. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anomalía de Ebstein/genética , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Insuficiencia Cardíaca/genética , Mutación , Fenotipo , Tropomiosina/genética , Preescolar , Aberraciones Cromosómicas , Anomalía de Ebstein/diagnóstico , Ecocardiografía , Resultado Fatal , Femenino , Genotipo , Cardiopatías Congénitas/diagnóstico , Insuficiencia Cardíaca/diagnóstico , Humanos , Imagen por Resonancia Magnética , Radiografía Torácica
16.
Hum Genet ; 134(9): 1003-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26164125

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) that necessitates staged, single ventricle surgical palliation. An increased frequency of bicuspid aortic valve (BAV) has been observed among relatives. We postulated number of mutant alleles as a molecular basis for variable CHD expression in an extended family comprised of an HLHS proband and four family members who underwent echocardiography and whole-genome sequencing (WGS). Dermal fibroblast-derived induced pluripotent stem cells (iPSC) were procured from the proband-parent trio and bioengineered into cardiomyocytes. Cardiac phenotyping revealed aortic valve atresia and a slit-like left ventricular cavity in the HLHS proband, isolated bicuspid pulmonary valve in his mother, BAV in a maternal 4° relative, and no CHD in his father or sister. Filtering of WGS for rare, functional variants that segregated with CHD and were compound heterozygous in the HLHS proband identified NOTCH1 as the sole candidate gene. An unreported missense mutation (P1964L) in the cytoplasmic domain, segregating with semilunar valve malformation, was maternally inherited and a rare missense mutation (P1256L) in the extracellular domain, clinically silent in the heterozygous state, was paternally inherited. Patient-specific iPSCs exhibited diminished transcript levels of NOTCH1 signaling pathway components, impaired myocardiogenesis, and a higher prevalence of heterogeneous myofilament organization. Extended, phenotypically characterized families enable WGS-derived variant filtering for plausible Mendelian modes of inheritance, a powerful strategy to discover molecular underpinnings of CHD. Identification of compound heterozygous NOTCH1 mutations and iPSC-based functional modeling implicate mutant allele burden and impaired myogenic potential as mechanisms for HLHS.


Asunto(s)
Heterocigoto , Síndrome del Corazón Izquierdo Hipoplásico/genética , Receptor Notch1/genética , Válvula Aórtica/anomalías , Enfermedad de la Válvula Aórtica Bicúspide , Biología Computacional , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Genómica , Enfermedades de las Válvulas Cardíacas , Humanos , Masculino , Mutación , Linaje
17.
Am J Med Genet A ; 167A(4): 886-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706677

RESUMEN

Idiopathic dilated cardiomyopathy is a heritable, genetically heterogeneous disorder characterized by progressive heart failure. Dilated cardiomyopathy typically exhibits autosomal dominant inheritance, yet frequently remains clinically silent until adulthood. We sought to discover the molecular basis of idiopathic, non-syndromic dilated cardiomyopathy in a one-month-old male presenting with severe heart failure. Previous comprehensive testing of blood, urine, and skin biopsy specimen was negative for metabolic, mitochondrial, storage, and infectious etiologies. Ophthalmologic examination was normal. Chromosomal microarray and commercial dilated cardiomyopathy gene panel testing failed to identify a causative mutation. Parental screening echocardiograms revealed no evidence of clinically silent dilated cardiomyopathy. Whole exome sequencing was carried out on the family trio on a research basis, filtering for rare, deleterious, recessive and de novo genetic variants. Pathogenic compound heterozygous truncating mutations were identified in ALMS1, diagnostic of Alström syndrome and prompting disclosure of genetic findings. Alström syndrome is a known cause for dilated cardiomyopathy in children yet delayed and mis-diagnosis are common owing to its rarity and age-dependent emergence of multisystem clinical manifestations. At six months of age the patient ultimately developed bilateral nystagmus and hyperopia, features characteristic of the syndrome. Early diagnosis is guiding clinical monitoring of other organ systems and allowing for presymptomatic intervention. Furthermore, recognition of recessive inheritance as the mechanism for sporadic disease has informed family planning. This case highlights a limitation of standard gene testing panels for pediatric dilated cardiomyopathy and exemplifies the potential for whole exome sequencing to solve a diagnostic dilemma and enable personalized care.


Asunto(s)
Síndrome de Alstrom/diagnóstico , Cardiomiopatía Dilatada/diagnóstico , Síndrome de Alstrom/genética , Cardiomiopatía Dilatada/genética , Proteínas de Ciclo Celular , Codón sin Sentido , Análisis Mutacional de ADN , Exoma , Humanos , Lactante , Masculino , Técnicas de Diagnóstico Molecular , Proteínas/genética
18.
Physiol Genomics ; 46(13): 482-95, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24803680

RESUMEN

Mammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, knowledge of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Mapping the dynamic transcriptional landscape of cardiogenesis from a genomic perspective is essential to integrate the knowledge of heart development into translational applications that accelerate disease discovery efforts toward mechanistic-based treatment strategies. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide dynamic expression landscape of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, revealed stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling known genetic underpinnings of CHD, we deconstructed a disease-centric dynamic interactome encoded within this cardiogenic atlas to identify stage-specific developmental disturbances clustered on regulation of epithelial-to-mesenchymal transition (EMT), BMP signaling, NF-AT signaling, TGFb-dependent EMT, and Notch signaling. Collectively, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Corazón/embriología , Organogénesis/genética , Mapas de Interacción de Proteínas/genética , Animales , Embrión de Mamíferos , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Ratones , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo
19.
Nat Genet ; 36(4): 382-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15034580

RESUMEN

Stress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (K(ATP)) channels that adjust membrane potential-dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac K(ATP) channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A. Mutant SUR2A proteins showed aberrant redistribution of conformations in the intrinsic ATP hydrolytic cycle, translating into abnormal K(ATP) channel phenotypes with compromised metabolic signal decoding. Defective catalysis-mediated pore regulation is thus a mechanism for channel dysfunction and susceptibility to dilated cardiomyopathy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Cardiomiopatía Dilatada/genética , Activación del Canal Iónico/genética , Mutación , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Receptores de Droga/genética , Adulto , Secuencia de Aminoácidos , Animales , Catálisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas
20.
Circ Genom Precis Med ; 16(1): e003761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580305

RESUMEN

BACKGROUND: Deciphering hypoplastic left heart syndrome (HLHS) pathogenesis is confounded by its genetic heterogeneity and oligogenic underpinnings. METHODS: Whole genome sequences were analyzed by 3 independent strategies to identify HLHS gene candidates, ranked by variant, gene, and disease-level metrics. RESULTS: First, a genome-wide association study of 174 cases and 853 controls revealed suggestive association with a MYO18B intron 33 variant (rs2269628-G; frequency=0.55 versus 0.39; OR, 1.97 [95% CI, 1.54-2.52]; P=6.70×10-8). Second, transmission disequilibrium testing of 161 HLHS proband-parent trios revealed overrepresentation of a MYO18B intron 42 variant (rs73154186-A; frequency=0.05; OR, 24 [95% CI, 3.2-177.4]; P=4.23×10-6). Third, rare, predicted-damaging variants were filtered in 2 multiplex families. In 141H, 2 fifth-degree relatives with HLHS shared a paternally-inherited MYO5A missense variant (p.Arg801Trp; frequency=0.00003; combined annotation-dependent depletion score=29), each with a maternally-inherited or de novo candidate modifier variant in a MYO5A-interacting conventional myosin. In 442H, a HLHS proband was compound heterozygous for MYO15A variants-a maternally-inherited pathogenic stop-gain variant co-segregating with tetralogy of Fallot and bicuspid aortic valve in maternal relatives (p.Tyr2819Ter; frequency=0.00003) and a paternally-inherited intronic variant altering a canonical transcription factor binding site (rs1277068603; frequency=0.00001; position weight matrix score=0.98). CONCLUSIONS: Collectively, these findings suggest that common and rare alleles within unconventional myosin genes are associated with HLHS susceptibility. The identified candidate MYO18B regulates cardiac sarcomerogenesis, supporting the hypothesis of intrinsic myogenic perturbation in arrested left heart development.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Estudio de Asociación del Genoma Completo , Mutación , Patrón de Herencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA