RESUMEN
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Asunto(s)
Genoma , Mamuts , Piel , Animales , Mamuts/genética , Genoma/genética , Femenino , Elefantes/genética , Cromatina/genética , Fósiles , ADN Antiguo/análisis , Ratones , Humanos , Cromosoma X/genéticaRESUMEN
SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit. Here, we show that both in humans and hamsters, SARS-CoV-2 infection causes widespread downregulation of olfactory receptors (ORs) and of their signaling components. This non-cell-autonomous effect is preceded by a dramatic reorganization of the neuronal nuclear architecture, which results in dissipation of genomic compartments harboring OR genes. Our data provide a potential mechanism by which SARS-CoV-2 infection alters the cellular morphology and the transcriptome of cells it cannot infect, offering insight to its systemic effects in olfaction and beyond.
Asunto(s)
Anosmia , COVID-19 , Animales , Cricetinae , Regulación hacia Abajo , Humanos , Receptores Odorantes , SARS-CoV-2 , OlfatoRESUMEN
The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Genoma Humano , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Código de Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , CohesinasRESUMEN
Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.
Asunto(s)
Evolución Molecular , Proteínas de Homeodominio , Locomoción , Marsupiales , Factores de Transcripción , Animales , Femenino , Masculino , Ratones , Epigenómica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Genómica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Locomoción/genética , Marsupiales/anatomía & histología , Marsupiales/clasificación , Marsupiales/genética , Marsupiales/crecimiento & desarrollo , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fenotipo , HumanosRESUMEN
We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify â¼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.
Asunto(s)
Núcleo Celular/genética , Cromatina/química , Genoma Humano , Animales , Factor de Unión a CCCTC , Línea Celular , Núcleo Celular/química , Regulación de la Expresión Génica , Código de Histonas , Humanos , Ratones , Conformación Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismoRESUMEN
We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.
Asunto(s)
Mamíferos , Pangolines , Animales , Masculino , Femenino , Pangolines/genética , Mamíferos/genética , Genoma , Cromosomas/genéticaRESUMEN
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.
Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genéticaRESUMEN
Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.
Asunto(s)
Escarabajos/genética , Sintenía/genética , Gorgojos/genética , Animales , Evolución Biológica , Cromosomas/genética , Evolución Molecular , Genoma de los Insectos/genética , Genómica/métodos , FilogeniaRESUMEN
The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.
Asunto(s)
Especies en Peligro de Extinción , Hurones , Animales , Masculino , Hurones/genética , Cariotipo , Cariotipificación , FertilidadRESUMEN
BACKGROUND: Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. RESULTS: Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. CONCLUSIONS: The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.
Asunto(s)
Lobos , Animales , China , Cromosomas , Perros , Femenino , Genoma , Genómica , Masculino , Lobos/genéticaRESUMEN
Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.
Asunto(s)
Adaptación Fisiológica , Peromyscus , Adaptación Fisiológica/genética , Animales , Clima , Genoma , Peromyscus/genética , Análisis de Secuencia de ADNRESUMEN
In this issue of Molecular Cell, Fabian et al. (2009) demonstrate that in cell-free extracts from mouse Krebs-2 ascites, microRNA-mediated translational repression precedes target mRNA deadenylation, and identify GW182, PABP, and deadenylase subunits CAF1 and CCR4 as factors required for deadenylation.
Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Ascitis/genética , Ascitis/metabolismo , Autoantígenos/metabolismo , Sitios de Unión , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas , Humanos , Cinética , Ratones , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Receptores CCR4/metabolismo , Proteínas Represoras , RibonucleasasRESUMEN
During mouse embryogenesis, expression of the long non-coding RNA (lncRNA) Airn leads to gene repression and recruitment of Polycomb repressive complexes (PRCs) to varying extents over a 15-Mb domain. The mechanisms remain unclear. Using high-resolution approaches, we show in mouse trophoblast stem cells that Airn expression induces long-range changes to chromatin architecture that coincide with PRC-directed modifications and center around CpG island promoters that contact the Airn locus even in the absence of Airn expression. Intensity of contact between the Airn lncRNA and chromatin correlated with underlying intensity of PRC recruitment and PRC-directed modifications. Deletion of CpG islands that contact the Airn locus altered long-distance repression and PRC activity in a manner that correlated with changes in chromatin architecture. Our data imply that the extent to which Airn expression recruits PRCs to chromatin is controlled by DNA regulatory elements that modulate proximity of the Airn lncRNA product to its target DNA.
Asunto(s)
ARN Largo no Codificante , Animales , Ratones , Cromatina , Desarrollo Embrionario , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
RESUMEN
BACKGROUND: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Asunto(s)
Canidae , Genoma Mitocondrial , Lobos , Perros , Animales , Femenino , Epigenoma , Filogenia , Australia , Canidae/genética , Lobos/genética , CromosomasRESUMEN
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Asunto(s)
Conducta Social , Sudor , Abejas , Animales , Reproducción , FenotipoRESUMEN
Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF's RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.
Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Cromatina/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Elementos de Facilitación Genéticos/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regiones Promotoras GenéticasRESUMEN
The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.
Asunto(s)
Evolución Molecular , Hominidae , Animales , Cromosomas/genética , Genoma , Hominidae/genética , Mamíferos/genética , Recombinación GenéticaRESUMEN
Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.
Asunto(s)
Canidae , Lobos , Animales , Australia , Cruzamiento , Canidae/genética , Perros , Filogenia , Lobos/genéticaRESUMEN
Olfaction relies on a coordinated partnership between odorant flow and neuronal communication. Disruption in our ability to detect odors, or anosmia, has emerged as a hallmark symptom of infection with SARS-CoV-2, yet the mechanism behind this abrupt sensory deficit remains elusive. Here, using molecular evaluation of human olfactory epithelium (OE) from subjects succumbing to COVID-19 and a hamster model of SARS-CoV-2 infection, we discovered widespread downregulation of olfactory receptors (ORs) as well as key components of their signaling pathway. OR downregulation likely represents a non-cell autonomous effect, since SARS-CoV-2 detection in OSNs is extremely rare both in human and hamster OEs. A likely explanation for the reduction of OR transcription is the striking reorganization of nuclear architecture observed in the OSN lineage, which disrupts multi-chromosomal compartments regulating OR expression in humans and hamsters. Our experiments uncover a novel molecular mechanism by which a virus with a very selective tropism can elicit persistent transcriptional changes in cells that evade it, contributing to the severity of COVID-19.