Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 130(11): 1357-1363, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28698207

RESUMEN

Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.


Asunto(s)
Antígenos CD/metabolismo , Sistema del Grupo Sanguíneo Duffy/metabolismo , Plasmodium cynomolgi/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Transferrina/metabolismo , Reticulocitos/parasitología , Tropismo , Zoonosis/parasitología , Animales , Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Macaca , Merozoítos/fisiología , Plasmodium vivax/fisiología , Reología
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122026, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36395614

RESUMEN

Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium. Understanding the biological features of various parasite forms is important for the optical diagnosis and defining pathological states, which are often constrained by the lack of ambient visualization approaches. Here, we employ a label-free tomographic technique to visualize the host red blood cell (RBC) remodeling process and quantify changes in biochemical properties arising from parasitization. Through this, we provide a quantitative body of information pertaining to the influence of host cell environment on growth, survival, and replication of P. falciparum and P. vivax in their respective host cells: mature erythrocytes and young reticulocytes. These exquisite three-dimensional measurements of infected red cells demonstrats the potential of evolving 3D imaging to advance our understanding of Plasmodium biology and host-parasite interactions.


Asunto(s)
Malaria , Plasmodium , Humanos , Malaria/parasitología , Eritrocitos/parasitología , Procesamiento de Imagen Asistido por Computador , Tomografía
3.
PLoS Negl Trop Dis ; 14(7): e0008202, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645098

RESUMEN

Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.


Asunto(s)
Variación Genética , Malaria Vivax/inmunología , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Anticuerpos Antiprotozoarios/inmunología , Asia , Humanos , Inmunidad Humoral , Malaria Vivax/parasitología , Plasmodium vivax/química , Plasmodium vivax/inmunología , Polimorfismo Genético , Proteínas Protozoarias/química , Selección Genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA