Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Inorg Chem ; 62(21): 8379-8388, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37191662

RESUMEN

The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (Ag3Sb), and binary or ternary metal sulfide (Ag2S and AgSbS2) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and Ag3Sb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic Ag3Sb.

2.
Chemphyschem ; 22(13): 1352-1360, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33909320

RESUMEN

H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.

3.
Phys Chem Chem Phys ; 18(13): 9295-304, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26977761

RESUMEN

Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

4.
Anal Chem ; 87(23): 11641-5, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26516786

RESUMEN

Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid-liquid, liquid-liquid, and liquid-gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (-54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH(-)) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.

5.
Analyst ; 139(11): 2896-903, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24757708

RESUMEN

There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.


Asunto(s)
Carbono/química , Dopamina/análisis , Técnicas Electroquímicas/métodos , Electrodos , Microfluídica/instrumentación , Nanopartículas , Dopamina/sangre , Humanos
6.
Chemistry ; 19(26): 8673-8, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23650112

RESUMEN

The large-scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl-terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post-functionalization with two thiolated precursors, namely 6-(ferrocenyl)hexanethiol and 1H,1H,2H,2H-perfluorodecanethiol. X-ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces.


Asunto(s)
Alquinos/química , Dopamina/química , Grafito/química , Compuestos de Sulfhidrilo/química , Química Clic , Nanocompuestos/química , Oxidación-Reducción , Óxidos/química , Sonicación , Temperatura
7.
Langmuir ; 29(51): 16034-9, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24328179

RESUMEN

We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 µm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions.

8.
Analyst ; 138(6): 1779-86, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23364807

RESUMEN

α-Fe(2)O(3) nanofibers are synthesized by a simple and efficient electrospinning method and the selective determination of folic acid (FA) is demonstrated in the presence of an important physiological interferent, ascorbic acid (AA), using the α-Fe(2)O(3) nanofiber modified glassy carbon (GC) electrode at physiological pH. Bare GC electrode fails to determine the concentration of FA in the presence of a higher concentration of AA due to the surface fouling caused by the oxidized products of AA and FA. However, modification with α-Fe(2)O(3) nanofibers not only separates the voltammetric signals of AA and FA by 420 mV between AA and FA, but also enhances higher oxidation current. The amperometric current response is linearly dependent on FA concentration in the range of 60-60,000 nM, and the α-Fe(2)O(3) nanofiber modified electrode displayed an excellent sensitivity for FA detection with an experimental detection limit of 60 nM (1.12 × 10(-10) M (S/N = 3)). Furthermore, the α-Fe(2)O(3) nanofiber modified electrode showed an admirable selectivity towards the determination of FA even in the presence of a 1000-fold excess of AA and other common interferents. This modified electrode has been successfully applied for determination of FA in human blood serum samples.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Compuestos Férricos/química , Ácido Fólico/sangre , Nanoestructuras/química , Técnicas Biosensibles/instrumentación , Humanos , Nanoestructuras/ultraestructura , Sensibilidad y Especificidad
9.
Biofabrication ; 15(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473749

RESUMEN

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.


Asunto(s)
Bioimpresión , Hidrogeles , Hidrogeles/química , Desarrollo de Músculos/genética , Microfluídica , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
RSC Adv ; 12(17): 10675-10685, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35424992

RESUMEN

Mixed metal sulfides are increasingly being investigated because of their prospective applications for electrochemical energy storage and conversion. Their high electronic conductivity and high density of redox sites result in significant improvement of their electrochemical properties. Herein, the composition-dependent supercapacitive and water splitting performance of a series of Ni(1-x)Cu x Co2S4 (0.2 ≤ x ≤ 0.8) solid solutions prepared via solvent-less pyrolysis of a mixture of respective metal ethyl xanthate precursors is reported. The use of xanthate precursors resulted in the formation of surface clean nanomaterials at low-temperature. Their structural, compositional, and morphological features were examined by p-XRD, SEM, and EDX analyses. Both supercapacitive and electrocatalytic (HER, OER) properties of the synthesized materials significantly vary with composition (Ni/Cu molar content). However, the optimal composition depends on the application. The highest specific capacitance of 770 F g-1 at a current density of 1 A g-1 was achieved for Ni0.6Cu0.4Co2S4 (NCCS-2). This electrode exhibits capacitance retention (C R) of 67% at 30 A g-1, which is higher than that observed for pristine NiCo2S4 (838 F g-1 at 1 A g-1, 47% C R at 30 A g-1). On the contrary, Ni0.4Cu0.6Co2S4 (NCCS-3) exhibits the lowest overpotential of 124 mV to deliver a current density of 10 mA cm-2. Finally, the best OER activity with an overpotential of 268 mV at 10 mA cm-2 was displayed by Ni0.8Cu0.2Co2S4 (NCCS-1). The prepared electrodes exhibit high stability, as well as durability.

11.
Dalton Trans ; 50(33): 11347-11359, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34369529

RESUMEN

Renewable and sustainable functional nanomaterials, which can be employed in alternative green energy sources, are highly desirable. Transition metal chalcogenides are potential catalysts for processes resulting in energy generation and storage. In order to optimize their catalytic performance, high phase purity and precise control over shape and size are indispensable. Metal-organic precursors with pre-formed bonds between the metal and the chalcogenide atoms are advantageous in synthesizing phase pure transition metal chalcogenides with controlled shape and sizes. This can be achieved by the decomposition of metal-organic precursors in the presence of suitable surfactants/capping agents. However, the recent studies on electrocatalysis at the nanoscale level reveal that the capping agents attached to their surface have a detrimental effect on their efficiency. The removal of surfactants from active sites to obtain bare surface nanoparticles is necessary to enhance catalytic activity. Herein, we have discussed the properties of different metal-organic precursors and the role of surfactants in the colloidal synthesis of metal chalcogenide nanomaterials. Moreover, the effect of surfactants on their electrocatalytic performance, the commonly used strategies for removing surfactants from the surface of nanomaterials and the future perspectives are reviewed.

12.
Analyst ; 135(8): 2051-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20532339

RESUMEN

Thin silicate films with immobilised enzymes catalysing dioxygen reduction, i.e. laccase and bilirubin oxidase (BOD), were deposited on glass and poly(methyl 2-methylpropenoate) (Plexiglas) surfaces in a sol-gel process by sol drop evaporation. Scanning electrochemical microscopy (SECM) images and approach curves were recorded using hexacyanoferrate(iii) as mediator in the feedback mode. Confocal laser scanning microscopy (CLSM) images in the reflection mode showed larger film thickness close to the edge of the film and laccase aggregates within the film. SECM images obtained using different dioxygen concentrations showed that the film edge and laccase aggregates exhibit higher enzymatic activity towards dioxygen reduction. SECM current-distance curves enabled the determination of kinetic information at the particular regions of the samples after numerical fitting of model parameters. The heterogeneous first order rate constant at the film border was estimated to be ca. 19 times higher than the value obtained when approaching to the centre of the film. The reason of higher laccase surface concentration at the film edge is carefully discussed. For comparison of laccase and BOD activities, silicate spots of 50 microm diameter were deposited on a single Plexiglas sample and examined using SECM. BOD exhibits much higher activity especially at neutral pH.


Asunto(s)
Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/química , Lacasa/química , Membranas Artificiales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Silicatos/química , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Geles/química , Vidrio/química , Lacasa/metabolismo , Microscopía Confocal , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxígeno/química , Propiedades de Superficie
13.
ACS Omega ; 5(37): 23909-23918, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984711

RESUMEN

Stable polymeric materials with embedded nano-objects, retaining their specific properties, are indispensable for the development of nanotechnology. Here, a method to obtain Pt, Pd, Au, and Ag nanoparticles (ca. 10 nm, independent of the metal) by the reduction of their ions in pectin, in the absence of additional reducing agents, is described. Specific interactions between the pectin functional groups and nanoparticles were detected, and they depend on the metal. Bundles and protruding nanoparticles are present on the surface of nanoparticles/pectin films. These films, deposited on the electrode surface, exhibit electrochemical response, characteristic for a given metal. Their electrocatalytic activity toward the oxidation of a few exemplary organic molecules was demonstrated. In particular, a synergetic effect of simultaneously prepared Au and Pt nanoparticles in pectin films on glucose electro-oxidation was found.

14.
J Nanosci Nanotechnol ; 9(4): 2346-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19437974

RESUMEN

Multiwalled carbon nanotubes were entrapped in sol-gel processed hydrophilic silicate thin film on tin-doped indium oxide support. Microscopic images show that the nanotubes form large agglomerates of largely separated nanotubes covered by silicate film. The measurements of capacitive current prove that approximately 10% of them remain electrochemically active. The surface confined cyclic voltammetry indicate adsorption of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) on this material. The oxidation charge estimated after the adsorption saturated shows that this compound is adsorbed on almost all the surface of the immobilised carbon nanotubes. After further modification of the electrode with extracellular laccase from Cerrena unicolor electrocatalytic dioxygen reduction is observed. The immobilised enzyme exhibits catalytic action whereas 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) adsorbed on carbon nanotubes serves as electron mediator between protein and electrode. Bioelectrocatalysis is also observed in the absence of adsorbed mediator but the efficiency of the process is approximately one order of magnitude smaller.


Asunto(s)
Benzotiazoles/química , Técnicas Biosensibles/métodos , Lacasa/metabolismo , Nanotubos de Carbono/química , Oxígeno/metabolismo , Silicatos/química , Ácidos Sulfónicos/química , Adsorción , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lacasa/química , Oxidación-Reducción
15.
Nanoscale Adv ; 1(7): 2645-2653, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36132742

RESUMEN

Due to the limited availability of noble metal catalysts, such as platinum, palladium, or gold, their substitution by more abundant elements is highly advisable. Considerably challenging is the controlled and reproducible synthesis of stable non-noble metallic nanostructures with accessible active sites. Here, we report a method of preparation of bare (ligand-free) Cu nanostructures from polycrystalline metal in a controlled manner. This procedure relies on heterogeneous localized electrorefining of polycrystalline Cu on indium tin oxide (ITO) and glassy carbon as model supports using scanning electrochemical microscopy (SECM). The morphology of nanostructures and thus their catalytic properties are tunable by adjusting the electrorefining parameters, i.e., the electrodeposition voltage, the translation rate of the metal source and the composition of the supporting electrolyte. The activity of the obtained materials towards the carbon dioxide reduction reaction (CO2RR), oxygen reduction reaction (ORR) in alkaline media and hydrogen evolution reaction (HER), is studied by feedback mode SECM. Spiky Cu nanostructures obtained at a high concentration of chloride ions exhibit enhanced electrocatalytic activity. Nanostructures deposited under high cathodic overpotentials possess a high surface-to-volume ratio with a large number of catalytic sites active towards the reversible CO2RR and ORR. The CO2RR yields easily electrooxidizable compounds - formic acid and carbon monoxide. The HER seems to occur efficiently at the crystallographic facets of Cu nanostructures electrodeposited under mild polarization.

17.
Anal Chem ; 80(19): 7643-8, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18729478

RESUMEN

The ability of such a common redox mediator as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to undergo sorption on carbon surfaces is explored here to convert multiwalled carbon nanotubes (CNTs) into a stable colloidal solution of ABTS-modified carbon nanostructures, the diameters of which are approximately 10 nm (as determined by transmission electron microscopy). Subsequently, inks composed of fungal laccase (Cerrena unicolor) mixed with the dispersion of ABTS-modified CNTs and stabilized with Nafion, were deposited on glassy carbon and successfully employed to the reduction of oxygen in McIlvain buffer at pH 5.2. For comparison, the systems utilizing only ABTS-free CNTs and laccase as well as ABTS-modified CNTs did not show appreciable activity toward the oxygen reduction. The three-dimensionally distributed ABTS-modified CNTs are expected to improve the film's overall conductivity and to facilitate electrical connection between the electrode and the enzyme. The network film of ABTS-modified CNTs is rigid, and it is characterized by charge propagation capabilities comparable to the conventional redox polymers. The whole concept of utilization of CNTs modified with ultrathin films of redox mediators in the preparation of efficient bioelectrocatalytic films seems to be of general importance to electroanalytical chemistry and to the development of biosensors.


Asunto(s)
Benzotiazoles/química , Nanotubos de Carbono/química , Oxígeno/química , Ácidos Sulfónicos/química , Catálisis , Coloides/química , Electrodos , Indicadores y Reactivos/química , Lacasa/química , Oxidación-Reducción
18.
Bioelectrochemistry ; 72(2): 174-82, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18372223

RESUMEN

The enzyme p-diphenol:dioxygen oxidoreductase (laccase, EC 1.10.3.2) was isolated from Cerrena unicolor fungus and embedded in a sol-gel film obtained by acidic condensation of TMOS. The gel was cast to thin films on glass. The laccase-containing silicate films were inspected by confocal laser scanning microscopy (CLSM), scanning force microscopy (SFM) and scanning electrochemical microscopy (SECM). CLSM images in the reflection mode showed aggregates within the silicate films. SECM images in the substrate-generation/tip-collection mode using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as electron donor for laccase showed that the position of aggregates coincides with increased enzymatic activity within the silicate film. The flux from individual aggregates was detected. SECM images in the redox competition mode confirmed the assignment and could exclude that topographic features observed by CLSM and SFM could be the reason for the image contrast. SFM images showed that the aggregates partially dissolve during prolonged exposure to aqueous buffer. The experimental setup allowed following one individual aggregate over time with all three microscopic techniques which enabled the collection of complementing information on morphology and catalytic activity as well as their development over time.


Asunto(s)
Lacasa/química , Lacasa/ultraestructura , Microscopía de Fuerza Atómica/métodos , Transición de Fase , Silicatos/química , Basidiomycota/enzimología , Basidiomycota/ultraestructura , Electroquímica , Lacasa/metabolismo
19.
Bioelectrochemistry ; 72(1): 1-2, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17964862

RESUMEN

Facile demetallation occurs upon contact of the methemoglobin with a mesoporous TiO2 host in phosphate buffer media at pH 5.5 but not in acetate buffer media. As a result, voltammetric signals previously attributed to hemoglobin-based redox processes have to be re-interpreted.


Asunto(s)
Nanopartículas del Metal/química , Metahemoglobina/química , Titanio/química , Acetatos/química , Tampones (Química) , Electroquímica , Electrodos , Oxidación-Reducción , Fosfatos/química , Porosidad
20.
Bioelectrochemistry ; 70(2): 221-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17056301

RESUMEN

Methemoglobin (bovine) is immobilized from aqueous phosphate buffer (pH 5.5) solution into thin porous TiO(2) (anatase) films at ITO electrode surfaces. Films of TiO(2) are produced in a deposition process employing 40 nm diameter TiO(2) nanoparticles suspended in dry methanol followed by calcination. The pore size in these films is sufficient for methemoglobin (ca. 6 nm diameter) to diffuse into the porous structure (over several hours) and to remain immobilized in electrochemically active form. The electrochemical reduction of methemoglobin immobilized in TiO(2) and immersed in aqueous phosphate buffer at pH 5.5 is observed in two steps with (i) a small quasi-reversible voltammetric response at -0.16 V vs. SCE (Process 1) and (ii) an irreversible reduction peak at ca. -0.5 V vs. SCE (Process 2). The irreversible response is recovered only after slow chemical re-oxidation of hemoglobin to methemoglobin. At sufficiently negative applied potential "electrochemical doping" of the TiO(2) host is observed to lead to a considerably enhanced reduction Process 1. TiO(2) can be temporarily switched from a non-conducting (irreversible electron transfer) into a conducting (reversible electron transfer) state.


Asunto(s)
Técnicas Biosensibles/métodos , Materiales Biocompatibles Revestidos/química , Electroquímica/métodos , Metahemoglobina/química , Nanoestructuras/química , Titanio/química , Adsorción , Conductividad Eléctrica , Ensayo de Materiales , Membranas Artificiales , Metahemoglobina/ultraestructura , Nanoestructuras/ultraestructura , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA