Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 42, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200511

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have emerged as one of the most promising first-line therapeutics in the management of non-small cell lung cancer (NSCLC). However, only a subset of these patients responds to ICIs, highlighting the clinical need to develop better predictive and prognostic biomarkers. This study will leverage pre-treatment imaging profiles to develop survival risk models for NSCLC patients treated with first-line immunotherapy. METHODS: Advanced NSCLC patients (n = 149) were retrospectively identified from two institutions who were treated with first-line ICIs. Radiomics features extracted from pretreatment imaging scans were used to build the predictive models for progression-free survival (PFS) and overall survival (OS). A compendium of five feature selection methods and seven machine learning approaches were utilized to build the survival risk models. The concordance index (C-index) was used to evaluate model performance. RESULTS: From our results, we found several combinations of machine learning algorithms and feature selection methods to achieve similar performance. K-nearest neighbourhood (KNN) with ReliefF (RL) feature selection was the best-performing model to predict PFS (C-index = 0.61 and 0.604 in discovery and validation cohorts), while XGBoost with Mutual Information (MI) feature selection was the best-performing model for OS (C-index = 0.7 and 0.655 in discovery and validation cohorts). CONCLUSION: The results of this study highlight the importance of implementing an appropriate feature selection method coupled with a machine learning strategy to develop robust survival models. With further validation of these models on external cohorts when available, this can have the potential to improve clinical decisions by systematically analyzing routine medical images.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Inmunoterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Radiómica , Estudios Retrospectivos
2.
Cancers (Basel) ; 16(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398098

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) have revolutionized non-small cell lung cancers (NSCLCs) treatment, but only 20-30% of patients benefit from these treatments. Currently, PD-L1 expression in tumor cells is the only clinically approved predictor of ICI response in lung cancer, but concerns arise due to its low negative and positive predictive value. Recent studies suggest that CXCL13+ T cells in the tumor microenvironment (TME) may be a good predictor of response. We aimed to assess if CXCL13+ cell localization within the TME can predict ICI response in advanced NSCLC patients. Methods: This retrospective study included 65 advanced NSCLC patients treated with Nivolumab/Pembrolizumab at IUCPQ or CHUM and for whom a pretreatment surgical specimen was available. Good responders were defined as having a complete radiologic response at 1 year, and bad responders were defined as showing cancer progression at 1 year. IHC staining for CXCL13 was carried out on a representative slide from a resection specimen, and CXCL13+ cell density was evaluated in tumor (T), invasive margin (IM), non-tumor (NT), and tertiary lymphoid structure (TLS) compartments. Cox models were used to analyze progression-free survival (PFS) and overall survival (OS) probability, while the Mann-Whitney test was used to compare CXCL13+ cell density between responders and non-responders. Results: We showed that CXCL13+ cell density localization within the TME is associated with ICI efficacy. An increased density of CXCL13+ cells across all compartments was associated with a poorer prognostic (OS; HR = 1.22; 95%CI = 1.04-1.42; p = 0.01, PFS; HR = 1.16; p = 0.02), or a better prognostic when colocalized within TLSs (PFS; HR = 0.84, p = 0.03). Conclusion: Our results support the role of CXCL13+ cells in advanced NSCLC patients, with favorable prognosis when localized within TLSs and unfavorable prognosis when present elsewhere. The concomitant proximity of CXCL13+ and CD20+ cells within TLSs may favor antigen presentation to T cells, thus enhancing the effect of PD-1/PD-L1 axis inhibition. Further validation is warranted to confirm the potential relevance of this biomarker in a clinical setting.

3.
Cancer Lett ; 594: 216984, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797230

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) positivity at diagnosis, which is associated with worse outcomes in multiple solid tumors including stage I-III non-small cell lung cancer (NSCLC), may have utility to guide (neo)adjuvant therapy. METHODS: In this retrospective study, 260 patients with clinical stage I NSCLC (180 adenocarcinoma, 80 squamous cell carcinoma) were allocated (2:1) to high- and low-risk groups based on relapse versus disease-free status ≤5 years post-surgery. We evaluated the association of preoperative ctDNA detection by a plasma-only targeted methylation-based multi-cancer early detection (MCED) test with NSCLC relapse ≤5 years post-surgery in the overall population, followed by histology-specific subgroup analyses. RESULTS: Across clinical stage I patients, preoperative ctDNA detection did not associate with relapse within 5 years post-surgery. Sub-analyses confined to lung adenocarcinoma suggested a histology-specific association between ctDNA detection and outcome. In this group, ctDNA positivity tended to associate with relapse within 2 years, suggesting prognostic implications of MCED test positivity may be histology- and time-dependent in stage I NSCLC. Preoperative ctDNA detection was associated with upstaging of clinical stage I to pathological stage II-III NSCLC. CONCLUSIONS: Our findings suggest preoperative ctDNA detection in patients with resectable clinical stage I NSCLC using MCED, a pan-cancer screening test developed for use in an asymptomatic population, has no detectable prognostic value for relapse ≤5 years post-surgery. MCED detection may be associated with early adenocarcinoma relapse and increased pathological upstaging rates in stage I NSCLC. However, given the exploratory nature of these findings, independent validation is required.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Metilación de ADN , Neoplasias Pulmonares , Estadificación de Neoplasias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética
4.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38254838

RESUMEN

BACKGROUND: Recent advances in cancer biomarker development have led to a surge of distinct data modalities, such as medical imaging and histopathology. To develop predictive immunotherapy biomarkers, these modalities are leveraged independently, despite their orthogonality. This study aims to explore the cross-scale association between radiological scans and digitalized pathology images for immunotherapy-treated non-small cell lung cancer (NSCLC) patients. METHODS: This study involves 36 NSCLC patients who were treated with immunotherapy and for whom both radiology and pathology images were available. A total of 851 and 260 features were extracted from CT scans and cell density maps of histology images at different resolutions. We investigated the radiopathomics relationship and their association with clinical and biological endpoints. We used the Kolmogorov-Smirnov (KS) method to test the differences between the distributions of correlation coefficients with the two imaging modality features. Unsupervised clustering was done to identify which imaging modality captures poor and good survival patients. RESULTS: Our results demonstrated a significant correlation between cell density pathomics and radiomics features. Furthermore, we also found a varying distribution of correlation values between imaging-derived features and clinical endpoints. The KS test revealed that the two imaging feature distributions were different for PFS and CD8 counts, while similar for OS. In addition, clustering analysis resulted in significant differences in the two clusters generated from the radiomics and pathomics features with respect to patient survival and CD8 counts. CONCLUSION: The results of this study suggest a cross-scale association between CT scans and pathology H&E slides among ICI-treated patients. These relationships can be further explored to develop multimodal immunotherapy biomarkers to advance personalized lung cancer care.

5.
JTO Clin Res Rep ; 4(12): 100602, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38124790

RESUMEN

Background: Although the immune checkpoint inhibitors, nivolumab and pembrolizumab, were found to be promising in patients with advanced NSCLC, some of them either do not respond or have recurrence after an initial response. It is still unclear who will benefit from these therapies, and, hence, there is an unmet clinical need to build robust biomarkers. Methods: Patients with advanced NSCLC (N = 323) who were treated with pembrolizumab or nivolumab were retrospectively identified from two institutions. Radiomics features extracted from baseline pretreatment computed tomography scans along with the clinical variables were used to build the predictive models for overall survival (OS), progression-free survival (PFS), and programmed death-ligand 1 (PD-L1). To develop the imaging and integrative clinical-imaging predictive models, we used the XGBoost learning algorithm with ReliefF feature selection method and validated them in an independent cohort. The concordance index for OS, PFS, and area under the curve for PD-L1 was used to evaluate model performance. Results: We developed radiomics and the ensemble radiomics-clinical predictive models for OS, PFS, and PD-L1 expression. The concordance indices of the radiomics model were 0.60 and 0.61 for predicting OS and PFS and area under the curve was 0.61 for predicting PD-L1 in the validation cohort, respectively. The combined radiomics-clinical model resulted in higher performance with 0.65, 0.63, and 0.68 to predict OS, PFS, and PD-L1 in the validation cohort, respectively. Conclusions: We found that pretreatment computed tomography imaging along with clinical data can aid as predictive biomarkers for PD-L1 and survival end points. These imaging-driven approaches may prove useful to expand the therapeutic options for nonresponders and improve the selection of patients who would benefit from immune checkpoint inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA