Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Mol Genet Metab ; 126(1): 53-63, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30473481

RESUMEN

Primary mitochondrial complex I deficiency is the most common defect of the mitochondrial respiratory chain. It is caused by defects in structural components and assembly factors of this large protein complex. Mutations in the assembly factor NDUFAF5 are rare, with only five families reported to date. This study provides clinical, biochemical, molecular and functional data for four unrelated additional families, and three novel pathogenic variants. Three cases presented in infancy with lactic acidosis and classic Leigh syndrome. One patient, however, has a milder phenotype, with symptoms starting at 27 months and a protracted clinical course with improvement and relapsing episodes. She is homozygous for a previously reported mutation, p.Met279Arg and alive at 19 years with mild neurological involvement, normal lactate but abnormal urine organic acids. We found the same mutation in one of our severely affected patients in compound heterozygosity with a novel p.Lys52Thr mutation. Both patients with p.Met279Arg are of Taiwanese descent and had severe hyponatremia. Our third and fourth patients, both Caucasian, shared a common, newly described, missense mutation p.Lys109Asn which we show induces skipping of exon 3. Both Caucasian patients were compound heterozygotes, one with a previously reported Ashkenazi founder mutation while the other was negative for additional exonic variants. Whole genome sequencing followed by RNA studies revealed a novel deep intronic variant at position c.223-907A>C inducing an exonic splice enhancer. Our report adds significant new information to the mutational spectrum of NDUFAF5, further delineating the phenotypic heterogeneity of this mitochondrial defect.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Metiltransferasas/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Adolescente , Biopsia , Niño , Preescolar , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Lactante , Masculino , Linaje , Piel/patología , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
2.
Eur J Neurosci ; 40(12): 3785-92, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25302959

RESUMEN

Mounting evidence suggests that auditory attention tasks may modulate the sensitivity of the cochlea by way of the corticofugal and the medial olivocochlear (MOC) efferent pathways. Here, we studied the extent to which a separate efferent tract, the 'uncrossed' MOC, which functionally connects the two ears, mediates inter-aural selective attention. We compared distortion product otoacoustic emissions (DPOAEs) in one ear with binaurally presented primaries, using an intermodal target detection task in which participants were instructed to report the occurrence of brief target events (visual changes, tones). Three tasks were compared under identical physical stimulation: (i) report brief tones in the ear in which DPOAE responses were recorded; (ii) report brief tones presented to the contralateral, non-recorded ear; and (iii) report brief phase shifts of a visual grating at fixation. Effects of attention were observed as parallel shifts in overall DPOAE contour level, with DPOAEs relatively higher in overall level when subjects ignored the auditory stimuli and attended to the visual stimulus, compared with both of the auditory-attending conditions. Importantly, DPOAE levels were statistically lowest when attention was directed to the ipsilateral ear in which the DPOAE recordings were made. These data corroborate notions that top-down mechanisms, via the corticofugal and medial efferent pathways, mediate cochlear responses during intermodal attention. New findings show attending to one ear can significantly alter the physiological response of the contralateral, unattended ear, probably through the uncrossed-medial olivocochlear efferent fibers connecting the two ears.


Asunto(s)
Atención/fisiología , Percepción Auditiva/fisiología , Lateralidad Funcional/fisiología , Células Ciliadas Auditivas Externas/fisiología , Estimulación Acústica/métodos , Adolescente , Femenino , Humanos , Masculino , Estimulación Luminosa , Percepción Visual/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA