RESUMEN
Genetic studies have shown the association of Parkinson's disease with alleles of the major histocompatibility complex. Here we show that a defined set of peptides that are derived from α-synuclein, a protein aggregated in Parkinson's disease, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in patients with Parkinson's disease. These responses may explain the association of Parkinson's disease with specific major histocompatibility complex alleles.
Asunto(s)
Enfermedad de Parkinson/inmunología , Linfocitos T/inmunología , alfa-Sinucleína/inmunología , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Aminoácidos , Autoinmunidad , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Linfocitos T/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología , alfa-Sinucleína/químicaRESUMEN
This corrects the article DOI: 10.1038/nature22815.
RESUMEN
BACKGROUND: House dust mite (HDM) allergens are a common cause of allergy and allergic asthma. A comprehensive analysis of proteins targeted by T cells, which are implicated in the development and regulation of allergic disease independent of their antibody reactivity, is still lacking. OBJECTIVE: To comprehensively analyse the HDM-derived protein targets of T cell responses in HDM-allergic individuals, and investigate their correlation with IgE/IgG responses and protein function. METHODS: Proteomic analysis (liquid chromatography-tandem mass spectrometry) of HDM extracts identified 90 distinct protein clusters, corresponding to 29 known allergens and 61 novel proteins. Peripheral blood mononuclear cells (PBMC) from 20 HDM-allergic individuals were stimulated with HDM extracts and assayed with a set of ~2500 peptides derived from these 90 protein clusters and predicted to bind the most common HLA class II types. 2D immunoblots were made in parallel to elucidate IgE and IgG reactivity, and putative function analyses were performed in silico according to Gene Ontology annotations. RESULTS: Analysis of T cell reactivity revealed a large number of T cell epitopes. Overall response magnitude and frequency was comparable for known and novel proteins, with 15 antigens (nine of which were novel) dominating the total T cell response. Most of the known allergens that were dominant at the T cell level were also IgE reactive, as expected, while few novel dominant T cell antigens were IgE reactive. Among known allergens, hydrolase activity and detectable IgE/IgG reactivity are strongly correlated, while no protein function correlates with immunogenicity of novel proteins. A total of 106 epitopes accounted for half of the total T cell response, underlining the heterogeneity of T cell responses to HDM allergens. CONCLUSIONS AND CLINICAL RELEVANCE: Herein, we define the T cell targets for both known allergens and novel proteins, which may inform future diagnostics and immunotherapeutics for allergy to HDM.
Asunto(s)
Alérgenos/inmunología , Antígenos Dermatofagoides/inmunología , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Proteoma , Proteómica , Linfocitos T/inmunología , Secuencia de Aminoácidos , Especificidad de Anticuerpos/inmunología , Biología Computacional , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Hipersensibilidad/sangre , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteómica/métodos , Linfocitos T/metabolismoRESUMEN
BACKGROUND: Japanese cedar (JC) pollen is a common trigger for allergic rhinitis in Japan. Pollen proteins targeted by IgE, including Cry j 1 and Cry j 2, and isoflavone reductase (IFR) have been identified. OBJECTIVE: To compare antigen-specific IgE titers and T-cell responses to JC pollen-derived extract and peptides in cohorts with high and low pollen exposure. METHODS: Peripheral blood mononuclear cells from JC pollen allergic or nonallergic patients who have lived in Japan for at least 1 year and JC pollen allergic patients who have never been to Japan were tested for T-cell responses against JC pollen extract and peptide pools derived from Cry j 1, Cry j 2, or IFR. T-cell reactivity was assessed by interleukin 5 and interferon γ production by ELISPOT. RESULTS: JC pollen-specific T-cell reactivity and IgE titers were significantly higher in the allergic compared with the nonallergic Japanese cohort, which was also associated with different patterns of polysensitization. Interestingly, a significant overlap was observed in the hierarchy of the T-cell epitopes in the allergic Japanese cohort compared with the allergic non-Japanese cohort. In all 3 cohorts, T-cell reactivity was dominantly directed against peptides from the major allergens Cry j 1 and 2, with few T-cell responses detected against IFR. CONCLUSION: Our studies identify common denominators of T-cell reactivity in patient populations with different sensitization patterns, suggesting that generally applicable immunotherapeutic approaches might be developed irrespective of exposure modality.
Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Cryptomeria/efectos adversos , Epítopos de Linfocito T/inmunología , Rinitis Alérgica Estacional/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Alelos , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Inmunoglobulina E/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Péptidos/inmunología , Polen/inmunología , Rinitis Alérgica Estacional/genética , Rinitis Alérgica Estacional/metabolismo , Linfocitos T/metabolismo , Adulto JovenRESUMEN
T cells play an important role in the pathogenesis of allergic diseases. However, the proteins considered as potential immunogens of allergenic T-cell responses have traditionally been limited to those that induce IgE responses. Timothy grass (TG) pollen is a well-studied inhaled allergen for which major IgE-reactive allergens have also been shown to trigger T helper 2 (Th2) responses. Here we examined whether other TG pollen proteins are recognized by Th2 responses independently of IgE reactivity. A TG pollen extract was analyzed by 2D gel electrophoresis and IgE/IgG immunoblots using pooled sera from allergic donors. Mass spectrometry of selected protein spots in combination with de novo sequencing of the whole TG pollen transcriptome identified 93 previously undescribed proteins for further study, 64 of which were not targeted by IgE. Predicted MHC binding peptides from the previoulsy undescribed TG proteins were screened for T-cell reactivity in peripheral blood mononuclear cells from allergic donors. Strong IL-5 production was detected in response to peptides from several of the previously undescribed proteins, most of which were not targeted by IgE. Responses against the dominant undescribed epitopes were associated with the memory T-cell subset and could even be detected directly ex vivo after Th2 cell enrichment. These findings demonstrate that a combined unbiased transcriptomic, proteomic, and immunomic approach identifies a greatly broadened repertoire of protein antigens targeted by T cells involved in allergy pathogenesis. The discovery of proteins that induce Th2 cells but are not IgE reactive may allow the development of safer immunotherapeutic strategies.
Asunto(s)
Antígenos de Plantas/inmunología , Hipersensibilidad/inmunología , Interleucina-5/biosíntesis , Phleum/inmunología , Polen/inmunología , Células Th2/inmunología , Alérgenos/inmunología , Anticuerpos/inmunología , Electroforesis en Gel Bidimensional , Epítopos/inmunología , Perfilación de la Expresión Génica , Humanos , Hipersensibilidad/genética , Immunoblotting , Inmunoglobulina E/inmunología , Memoria Inmunológica/inmunología , Datos de Secuencia Molecular , Extractos Vegetales/inmunología , Proteínas de Plantas/inmunología , Proteómica , Donantes de TejidosRESUMEN
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.
Asunto(s)
Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Herpesvirus Équido 1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Alelos , Animales , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Leucocitos Mononucleares , Ratones , Unión Proteica , Proteoma/inmunología , Linfocitos T Citotóxicos/metabolismo , Espectrometría de Masas en TándemRESUMEN
Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8(+) T cells that required HLA-B*57:01 molecules for their function; however, the mechanism by which abacavir induces this pathologic T-cell response remains unclear. Here we show that abacavir can bind within the F pocket of the peptide-binding groove of HLA-B*57:01, thereby altering its specificity. This provides an explanation for HLA-linked idiosyncratic adverse drug reactions, namely that drugs can alter the repertoire of self-peptides presented to T cells, thus causing the equivalent of an alloreactive T-cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir and that were recognized by T cells of hypersensitive patients. The assays that we have established can be applied to test additional compounds with suspected HLA-linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA-linked hypersensitivities, and guide the development of safer drugs.
Asunto(s)
Hipersensibilidad a las Drogas , Complejo Mayor de Histocompatibilidad , Péptidos/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Modelos MolecularesRESUMEN
Bla g allergens are major targets of IgE responses associated with cockroach allergies. However, little is known about corresponding T cell responses, despite their potential involvement in immunopathology and the clinical efficacy of specific immunotherapy. Bioinformatic predictions of the capacity of Bla g 1, 2, 4, 5, 6, and 7 peptides to bind HLA-DR, -DP, and -DQ molecules, and PBMC responses from 30 allergic donors, identified 25 T cell epitopes. Five immunodominant epitopes accounted for more than half of the response. Bla g 5, the most dominant allergen, accounted for 65% of the response, and Bla g 6 accounted for 20%. Bla g 5 induced both IL-5 and IFN-γ responses, whereas Bla g 6 induced mostly IL-5, and, conversely, Bla g 2 induced only IFN-γ. Thus, responses to allergens within a source are independently regulated, suggesting a critical role for the allergen itself, and not extraneous stimulation from other allergens or copresented immunomodulators. In comparing Ab with T cell responses for several donor/allergen combinations, we detected IgE titers in the absence of detectable T cell responses, suggesting that unlinked T cell-B cell help might support development of IgE responses. Finally, specific immunotherapy resulted in IL-5 down modulation, which was not associated with development of IFN-γ or IL-10 responses to any of the Bla g-derived peptides. In summary, the characteristics of T cell responses to Bla g allergens appear uncorrelated with IgE responses. Monitoring these responses may therefore yield important information relevant to understanding cockroach allergies and their treatment.
Asunto(s)
Alérgenos/inmunología , Ácido Aspártico Endopeptidasas/inmunología , Epítopos de Linfocito T/inmunología , Inmunoglobulina E/biosíntesis , Proteínas de Insectos/inmunología , Subgrupos de Linfocitos T/inmunología , Tropomiosina/inmunología , Alérgenos/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Células Cultivadas , Epítopos de Linfocito T/metabolismo , Antígenos HLA-DP/metabolismo , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Unión Proteica/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Tropomiosina/metabolismoRESUMEN
A panel of 133 allergens derived from 28 different sources, including fungi, trees, grasses, weeds, and indoor allergens, was surveyed utilizing prediction of HLA class II-binding peptides and ELISPOT assays with PBMC from allergic donors, resulting in the identification of 257 T cell epitopes. More than 90% of the epitopes were novel, and for 14 allergen sources were the first ever identified to our knowledge. The epitopes identified in the different allergen sources summed up to a variable fraction of the total extract response. In cases of allergens in which the identified T cell epitopes accounted for a minor fraction of the extract response, fewer known protein sequences were available, suggesting that for low epitope coverage allergen sources, additional allergen proteins remain to be identified. IL-5 and IFN-γ responses were measured as prototype Th2 and Th1 responses, respectively. Whereas in some cases (e.g., orchard grass, Alternaria, cypress, and Russian thistle) IL-5 production greatly exceeded IFN-γ, in others (e.g., Aspergillus, Penicillum, and alder) the production of IFN-γ exceeded IL-5. Thus, different allergen sources are associated with variable polarization of the responding T cells. The present study represents the most comprehensive survey to date of human allergen-derived T cell epitopes. These epitopes might be used to characterize T cell phenotype/T cell plasticity as a function of seasonality, or as a result of specific immunotherapy treatment or varying disease severity (asthma or rhinitis).
Asunto(s)
Alérgenos/inmunología , Epítopos de Linfocito T/inmunología , Linfocitos T/inmunología , Citocinas/biosíntesis , Humanos , Hipersensibilidad/inmunologíaRESUMEN
Classic ways to determine MHC restriction involve inhibition with locus-specific antibodies and antigen presentation assays with panels of cell lines matched or mismatched at the various loci of interest. However, these determinations are often complicated by T cell epitope degeneracy and promiscuity. We describe a selection of 46 HLA DR, DQ, and DP specificities that provide worldwide population (phenotypic) coverage of almost 90 % at each locus, and account for over 66 % of all genes at each locus. This panel afforded coverage of at least four HLA class II alleles in over 95 % of the individuals in four study populations of diverse ethnicity from the USA and South Africa. Next, a panel of single HLA class II-transfected cell lines, corresponding to these 46 allelic variants was assembled, consisting of lines previously developed and 15 novel lines generated for the present study. The novel lines were validated by assessing their HLA class II expression by FACS analysis, the in vitro peptide binding activity of HLA molecules purified from the cell lines, and their antigen presenting capacity to T cell lines of known restriction. We also show that these HLA class II-transfected cell lines can be used to rapidly and unambiguously determine HLA restriction of epitopes recognized by an individual donor in a single experiment. This panel of lines will enable high throughput determination of HLA restriction, enabling better characterization of HLA class II-restricted T cell responses and facilitating the development of HLA tetrameric staining reagents.
Asunto(s)
Variación Genética/genética , Genética de Población , Antígenos HLA-DP/genética , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Antígenos de Histocompatibilidad Clase II/genética , Alelos , Presentación de Antígeno , Linfocitos B/inmunología , Células Cultivadas , Epítopos/inmunología , Antígenos HLA-DP/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Linfocitos T/inmunologíaRESUMEN
OBJECTIVES: To outline the processes involved in large-scale T-cell epitope identification from common allergens and illustrate their relevance to development of allergy specific immunotherapy. DATA SOURCES: A set of studies recently published by our laboratory illustrating high-throughput identification of allergen specific T-cell epitopes. STUDY SELECTION: T-cell responses contribute both directly and indirectly to allergy-related disease. However, the molecular targets (epitopes) recognized by allergen-specific T cells are largely undefined. We review several different studies in the last 2 years that identified novel T-cell epitopes from a panel of 32 different allergen sources. RESULTS: Allergen-specific T-cell responses are highly heterogeneous. Epitopes prevalently recognized in allergic patients are often capable of binding to multiple HLA class II molecules. This feature can be used to predict these promiscuous epitopes by bioinformatic predictions. This approach was validated in the Timothy grass system and then applied to a panel of 31 other allergen sources. CONCLUSION: T-cell epitopes for common allergens have been identified, and a general method to identify epitopes from additional allergens has been validated. Characterization of epitopes for common allergens might enable new diagnostics and immunotherapy regimens. These data will also allow the study of T-cell responses in different patient populations and throughout disease progression.
Asunto(s)
Alérgenos/inmunología , Epítopos de Linfocito T/inmunología , Biología Computacional , Desensibilización Inmunológica , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Interleucina-17/fisiología , Phleum/inmunología , Células Th17/inmunología , Células Th2/inmunologíaRESUMEN
We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.
Asunto(s)
Alérgenos/inmunología , Epítopos de Linfocito T/inmunología , Oligopéptidos/inmunología , Phleum/inmunología , Secuencia de Aminoácidos , Antígenos de Plantas/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Epítopos/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-5/metabolismo , Datos de Secuencia Molecular , Oligopéptidos/síntesis química , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
A major concern about the ongoing swine-origin H1N1 influenza virus (S-OIV) outbreak is that the virus may be so different from seasonal H1N1 that little immune protection exists in the human population. In this study, we examined the molecular basis for pre-existing immunity against S-OIV, namely the recognition of viral immune epitopes by T cells or B cells/antibodies that have been previously primed by circulating influenza strains. Using data from the Immune Epitope Database, we found that only 31% (8/26) of B-cell epitopes present in recently circulating H1N1 strains are conserved in the S-OIV, with only 17% (1/6) conserved in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In contrast, 69% (54/78) of the epitopes recognized by CD8(+) T cells are completely invariant. We further demonstrate experimentally that some memory T-cell immunity against S-OIV is present in the adult population and that such memory is of similar magnitude as the pre-existing memory against seasonal H1N1 influenza. Because protection from infection is antibody mediated, a new vaccine based on the specific S-OIV HA and NA proteins is likely to be required to prevent infection. However, T cells are known to blunt disease severity. Therefore, the conservation of a large fraction of T-cell epitopes suggests that the severity of an S-OIV infection, as far as it is determined by susceptibility of the virus to immune attack, would not differ much from that of seasonal flu. These results are consistent with reports about disease incidence, severity, and mortality rates associated with human S-OIV.
Asunto(s)
Protección Cruzada/inmunología , Epítopos/inmunología , Inmunidad Celular/inmunología , Memoria Inmunológica/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Modelos Moleculares , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Biología Computacional , Bases de Datos Genéticas , Epítopos/genética , Hemaglutininas/genética , Humanos , Neuraminidasa/genéticaRESUMEN
Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.
Asunto(s)
Infecciones por Arenaviridae/terapia , Arenaviridae/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/uso terapéutico , Infecciones por Arenaviridae/prevención & control , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Epítopos/uso terapéutico , Antígenos HLA-A/uso terapéutico , Fiebres Hemorrágicas Virales/prevención & control , Fiebres Hemorrágicas Virales/terapia , Humanos , Inmunización , Ratones , Ratones Transgénicos , Resultado del TratamientoRESUMEN
Quantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity. We failed to identify any cross-reactions between the synthetic peptides in the panel and polyclonal CD8+ T cells raised to viral or alloantigens. These findings provide the best estimate to date of the frequency of T cell cross-reactivity to unrelated peptides ( approximately 1/30,000), explaining why cross-reactions between unrelated pathogens are infrequently encountered and providing a critical parameter for understanding the scope of self-tolerance.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Animales , Linfocitos T CD8-positivos/microbiología , Linfocitos T CD8-positivos/virología , Línea Celular Tumoral , Células Clonales , Reacciones Cruzadas , Reactividad Cruzada/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fragmentos de Péptidos/agonistas , Biblioteca de Péptidos , Valor Predictivo de las Pruebas , Unión Proteica/inmunologíaRESUMEN
Vaccinia virus is the prototypic orthopoxvirus and was the vaccine used to eradicate smallpox, yet the expression profiles of many of its genes remain unknown. Using a genome tiling array approach, we simultaneously measured the expression levels of all 223 annotated vaccinia virus genes during infection and determined their kinetics. For 95% of these genes, significant transcript levels were detected. Most remarkably, classification of the genes by their expression profiles revealed 35 genes exhibiting immediate-early expression. Although a similar kinetic class has been described for other virus families, to our knowledge, this is the first demonstration of its existence in orthopoxviruses. Despite expression levels higher than for genes in the other three kinetic classes, the functions of more than half of these remain unknown. Additionally, genes within each kinetic class were spatially grouped together in the genome. This genome-wide picture of transcription alters our understanding of how orthopoxviruses regulate gene expression.
Asunto(s)
Genes Inmediatos-Precoces , Genes Virales , Poxviridae/genética , ARN Mensajero/genética , Perfilación de la Expresión Génica , Células HeLa , Humanos , Cinética , Familia de Multigenes , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción GenéticaRESUMEN
Activation of CD4(+) T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4(+) T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2(d). This is quite disparate to the H-2(b) setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2(d) or whether additional CD4(+) T-cell epitopes could be identified in the setting of the H-2(b) background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4(+) T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4(+) epitopes, four of them also stimulate CD8(+) T cells in a statistically significant manner. Furthermore, we assessed these CD4(+) T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4(+) and CD8(+) T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Coriomeningitis Linfocítica/inmunología , Secuencia de Aminoácidos , Animales , Epítopos de Linfocito T , Antígenos H-2/metabolismo , Interferón gamma/biosíntesis , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia MolecularRESUMEN
Continuing antigenic drift allows influenza viruses to escape antibody-mediated recognition, and as a consequence, the vaccine currently in use needs to be altered annually. Highly conserved epitopes recognized by effector T cells may represent an alternative approach for the generation of a more universal influenza virus vaccine. Relatively few highly conserved epitopes are currently known in humans, and relatively few epitopes have been identified from proteins other than hemagglutinin and nucleoprotein. This prompted us to perform a study aimed at identifying a set of human T-cell epitopes that would provide broad coverage against different virus strains and subtypes. To provide coverage across different ethnicities, seven different HLA supertypes were considered. More than 4,000 peptides were selected from a panel of 23 influenza A virus strains based on predicted high-affinity binding to HLA class I or class II and high conservancy levels. Peripheral blood mononuclear cells from 44 healthy human blood donors were tested for reactivity against HLA-matched peptides by using gamma interferon enzyme-linked immunospot assays. Interestingly, we found that PB1 was the major target for both CD4(+) and CD8(+) T-cell responses. The 54 nonredundant epitopes (38 class I and 16 class II) identified herein provided high coverage among different ethnicities, were conserved in the majority of the strains analyzed, and were consistently recognized in multiple individuals. These results enable further functional studies of T-cell responses during influenza virus infection and provide a potential base for the development of a universal influenza vaccine.
Asunto(s)
Virus de la Influenza A/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad/inmunología , HumanosRESUMEN
Computational prediction of HLA class II restricted T cell epitopes has great significance in many immunological studies including vaccine discovery. In recent years, prediction of HLA class II binding has improved significantly but a strategy to globally predict the most dominant epitopes has not been rigorously defined. Using human immunogenicity data associated with sets of 15-mer peptides overlapping by 10 residues spanning over 30 different allergens and bacterial antigens, and HLA class II binding prediction tools from the Immune Epitope Database and Analysis Resource (IEDB), we optimized a strategy to predict the top epitopes recognized by human populations. The most effective strategy was to select peptides based on predicted median binding percentiles for a set of seven DRB1 and DRB3/4/5 alleles. These results were validated with predictions on a blind set of 15 new allergens and bacterial antigens. We found that the top 21% predicted peptides (based on the predicted binding to seven DRB1 and DRB3/4/5 alleles) were required to capture 50% of the immune response. This corresponded to an IEDB consensus percentile rank of 20.0, which could be used as a universal prediction threshold. Utilizing actual binding data (as opposed to predicted binding data) did not appreciably change the efficacy of global predictions, suggesting that the imperfect predictive capacity is not due to poor algorithm performance, but intrinsic limitations of HLA class II epitope prediction schema based on HLA binding in genetically diverse human populations.
Asunto(s)
Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Unión Proteica/inmunología , Algoritmos , Mapeo Epitopo , Cadenas HLA-DRB1/inmunología , Cadenas HLA-DRB3/inmunología , Cadenas HLA-DRB4/inmunología , Cadenas HLA-DRB5/inmunología , Humanos , Péptidos/inmunologíaRESUMEN
Transgenic mice expressing chimeric human leukocyte antigen (HLA)-B*0702 and murine H-2K(b) class I molecules were evaluated as a model system to study the immunogenicity of human cytotoxic T lymphocyte epitopes. Immunization of these mice with six known HLA-B*0702-restricted cytotoxic T lymphocyte epitopes emulsified in incomplete Freund's adjuvant induced significant immune responses specific for all six epitopes. A comparison of the immune responses between HLA-B*0702/K(b) and HLA-A*0201/K(b) transgenic mice demonstrated that the HLA-B*0702/K(b) mice possess a T-cell receptor repertoire capable of recognizing human B*0702 epitopes. However, the magnitude of B*0702-specific responses induced in B*0702/K(b) mice were approximately tenfold lower than A*0201-specific responses induced in HLA-A*0201/K(b) transgenic mice. A panel of 24 B*0702 motif-bearing peptides was used to examine the relationship between immunogenicity and HLA-B*0702 binding capacity. All seven peptides with high binding affinities of 50% inhibitory concentration < or =50 NM (IC(50) 50 nM or less) were immunogenic. Similarly, 75% (9 of 12) of the intermediate binders (IC(50) nM of 50-500) were also immunogenic. Finally, only two of five peptides with binding capacity > 500 nM were found to have marginal immunogenicity, whereas the other three were completely negative. HLA-B*0702/K(b) transgenic mice were found to induce B*0702-specific responses after immunization with whole DNA genes or minigenes, suggesting that, at least to some degree, B*0702 epitopes were generated as a result of natural in vivo processing and presentation.