Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527041

RESUMEN

Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (-) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Oro/química , Luteolina/farmacología , Nanopartículas del Metal/administración & dosificación , Plata/química , Antibacterianos/administración & dosificación , Antifúngicos/administración & dosificación , Luteolina/administración & dosificación , Nanopartículas del Metal/química
2.
Analyst ; 141(7): 2259-69, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26936406

RESUMEN

A novel electrochemical sensing platform for nitrobenzene has been developed using silver nanoparticles (AgNPs) embedded in the poly(amic) acid (PAA) polymer matrix (PAA-AgNPs). PAA was synthesized via the polycondensation reaction of para-phenylenediamine and benzene-1,2,4,5-tetracarboxylic dianhydride. PAA-AgNP nanocomposites were synthesized by the in situ reduction of a silver precursor by the polymer at room temperature in a one-step approach without using an extraneous reducing or capping agent. The composite was subsequently characterized in solution and as a thin film. The X-ray diffraction technique revealed the crystalline nature of the PAA films with the embedded AgNPs. Unlike conventional polymers, the synthesized PAA membrane exhibits significant UV/Vis spectroscopic response. The sequestered nanoparticles also show the characteristic surface plasmon resonance (SPR) peaks confirming the presence of AgNPs. Integrated charge areas were 4.826 mC and 2.176 C for PAA/GC and PAA-AgNPs/GC respectively. The charge at the PAA-AgNP/GC electrode is 451 times greater than that at the PAA/GC electrode suggesting that the AgNP composite exhibits higher electroactivity. When tested as a sensor for nitrobenzene, the PAA-AgNP modified GC electrode showed promising potential as an electrochemical sensor. The electrochemical sensors exhibit a wide linear dynamic range (10-600 µM) with a correlation coefficient of 0.9735, a detection limit of 1.68 µM and a sensitivity of 7.88 µA µM(-1). The sensor also exhibited minimal interference effects on structurally-similar nitroaromatic compounds and metal species such as 4-nitroaniline (4-NA), 2-nitrophenol (2-NP), dinitrobenzene (DNB), Pb(2+) and Cd(2+).

3.
Analyst ; 139(21): 5472-81, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25180235

RESUMEN

We describe the characterization and application of quercetin pentaphosphate (QPP), a new fluorimetric substrate for the detection of alkaline phosphatase (ALP) activity. QPP exhibits major absorbance peaks at 260/410 nm and a strong fluorescence at λex/λem = 425/510 nm at alkaline pH. The product of enzymatic reaction between QPP and ALP has a strong absorbance peak at 324 nm with no fluorescence at the investigated wavelengths. The product generated from the enzymatic reaction was found to be proportional to ALP activity, and the ALP activity was monitored by the absorbance difference at 310 nm and 410 nm. The change in absorbance was found to be proportional to the ALP concentration with a linear detection range and a limit of detection of 0.01-16 U L(-1) and 0.766 U L(-1), respectively. The enzyme activity was also monitored by evaluating the change in fluorescence emission at 530 nm with a linear range of 0.01-8 U L(-1) and a detection limit of 0.062 U L(-1). Further, the validity of the new substrate for ALP in conjugated form was tested using Bacillus globigii spores as the model sample. A detection limit of 5998 spores per mL was obtained using QPP as the substrate. Unlike the parent compound, QPP substrate exhibits stability in solution for over three and half months and was stable under storage for over 12 months. The results obtained demonstrate the effectiveness of QPP for ALP and compare well with other fluorescent substrates, such as Fluorescein, Alexa Fluor and Cy5.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Quercetina/metabolismo , Hidrólisis , Límite de Detección , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Especificidad por Sustrato
4.
Sci Total Environ ; 912: 169279, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123092

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.

5.
J Hazard Mater ; 465: 133366, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185081

RESUMEN

Traditional PFAS analysis by mass spectrometry (MS) is time-consuming, as laborious sample preparation (e.g., extraction and desalting) is necessary. Herein, we report fast detection of PFAS by paper spray (PS)-based MS techniques, which employs a triangular-shaped filter paper for sample loading and ionization (≤ 3 min per sample). In this study, PS-MS was first used for direct PFAS analysis of drinking water, tap water, and wastewater. Interestingly, food package paper materials can be directly cut and examined with PS-MS for possible PFAS contamination. For samples containing salt matrices which would suppress PFAS ion signal, desalting paper spray mass spectrometry (DPS-MS), was shown to be capable of rapidly desalting, ionizing and detecting PFAS species such as per-fluorooctanoic acid (PFOA) and per-fluorosulphonic acid (PFOS). The retention of PFAS on paper substrate while salts being washed away by water is likely due to hydrophilic interaction between the PFAS polar head (e.g., carboxylic acid, sulfonic acid) with the polar filter paper cellulose surface. The DPS-MS method is highly sensitive (limits of detection:1.2-4.5 ppt) and can be applicable for directly analyzing soil extract and soil samples. These results suggest the high potential of PS-MS and the related DPS-MS technique in real-world environmental analysis of PFAS.

6.
RSC Adv ; 13(31): 21781-21792, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37476037

RESUMEN

Fusarium oxysporum (F. oxysporum) is linked to the widespread fusarium wilt in plants affecting the quality and yield of food crops. Management of fusarium wilt by synthetic fertilizers poses safety concerns. Safer-by-design nanomaterials synthesized with a greener approach can meet the needs of commercial antifungal drug resistance. Herein, a simple aqueous reduction method has been adopted for the synthesis of anisotropic gold nanostars (AuNSs) using quercetin-para aminobenzoic acid (QPABA) as both a reducing and stabilizing agent at room temperature for the treatment of F. oxysporum. QPABA was used to control the growth of Au3+ star-shaped nanoparticles at increasing concentrations in the ratio of 2 : 1 (QPABA : Au3+ ions) respectively. Transmission electron microscopy (TEM) analysis of the as-prepared gold nanoparticles confirmed the formation of nanostars with sizes of 40 ± 2 nm. The formation of anisotropic gold nanoparticles was evaluated by UV-vis characterizations which showed longitudinal surface plasmon modes at 540 and 800 nm. The gold nanoparticles exhibit excellent antifungal activity against F. oxysporum with the minimum inhibitory concentration (MIC) of 100 µg mL-1 using an agar well-diffusion assay. AuNSs proved to be efficacious in controlling F. oxysporum, as shown in the SEM analysis with a disintegrated cell membrane upon treatment. Computational analysis was performed to determine the specific binding sites on the QPABA ligand for gold ion interactions using the DFT B3LYP method, with a 6-31+G(d) basis set. Results showed that the interaction between Au3+ and QPABA at the 4 and 3 positions yielded the highest stability and formation of gold nanostars. The results suggest that the synthesized AuNSs act as a promising antifungal agent with great potential in treating frequent fungal infections that affect agricultural production.

7.
RSC Adv ; 12(49): 31855-31868, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380935

RESUMEN

The widespread wilt disease caused by Fusarium solani spp is a pressing problem affecting crop production and intensive farming. Strategic biocontrol of Fusarium solani spp using phytochemical mediated nano-materials is eco-friendly compared to harsh synthetic fungicides. The present study demonstrates the comparative dose effects of QPABA-derived branched gold nanomaterial (AuNF) and quercetin-mediated spherical gold nanoparticles (s-AuNPs) against Fusarium solani spp. Quercetin-para aminobenzoic acid (QPABA) was synthesized using reductive amination by reacting para-aminobenzoic acid with quercetin in an eco-friendly solvent at 25 °C. The structure elucidation was confirmed using 1H and 13C-NMR. TLC analysis showed that QPABA (R f = 0.628) was more polar in water than quercetin (R f = 0.714). The as-synthesized QPABA serves as a reducing and capping agent for the synthesis of gold nanoflowers (AuNFs) and gold nanostars (AuNSs). The UV-vis, XRD, and TEM confirmed the SPR peak of gold (550 nm) and gold element with a particle size distribution of 20-80 nm for the nanostars respectively. AuNFs exhibited a significant (P < 0.05) inhibitory effect against F. solani in a dose-dependent manner using Agar well diffusion. Nevertheless, spherical-AuNPs were not effective against F. solani. The inhibitory effect was influenced by the size, dose treatment, and particle shape. The minimum inhibitory concentration (MIC) value of AuNFs was 125.7 ± 0.22 µg mL-1. Our results indicate that AuNFs show considerable antifungal activity against F. solani as compared to spherical AuNPs. This study shows a greener synthesis of gold anisotropic nanostructures using QPAB, which holds promise for the treatment of fungal pathogens impacting agricultural productivity.

8.
Biosensors (Basel) ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290942

RESUMEN

The spread and resurgence of the SARS-CoV-2 virus (COVID-19 disease) threatens human health and social relations. Prevention of COVID-19 disease partly relies on fabricating low-cost, point-of-care (POC) sensing technology that can rapidly and selectively detect the SARS-CoV-2 virus. We report a colorimetric, paper-based polydiacetylene (PDA) biosensor, designed to detect SARS-CoV-2 spike protein in artificial saliva. Analytical characterizations of the PDA sensor using NMR and FT-IR spectroscopy showed the correct structural elucidation of PCDA-NHS conjugation. The PDA sensor platform containing the N-Hydroxysuccinimide ester of 10, 12-pentacosadiynoic acid (PCDA-NHS) was divided into three experimental PCDA-NHS concentration groups of 10%, 20%, and 30% to optimize the performance of the sensor. The optimal PCDA-NHS molar concentration was determined to be 10%. The PDA sensor works by a color change from blue to red as its colorimetric output when the immobilized antibody binds to the SARS-CoV-2 spike protein in saliva samples. Our results showed that the PDA sensing platform was able to rapidly and qualitatively detect the SARS-CoV-2 spike protein within the concentration range of 1 to 100 ng/mL after four hours of incubation. Further investigation of pH and temperature showed minimal influence on the PDA sensor for the detection of COVID-19 disease. After exposure to the SARS-CoV-2 spike protein, smartphone images of the PDA sensor were used to assess the sensor output by using the red chromatic shift (RCS) of the signal response. These results indicate the potential and practical use of this PDA sensor design for the rapid, colorimetric detection of COVID-19 disease in developing countries with limited access to medical testing.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Colorimetría/métodos , Saliva Artificial , Espectroscopía Infrarroja por Transformada de Fourier , Técnicas Biosensibles/métodos , Ésteres , Saliva
9.
ACS Omega ; 6(8): 5124-5137, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681554

RESUMEN

DNA binding investigations are critical for designing better pharmaceutical compounds since the binding of a compound to dsDNA in the minor groove is critical in drug discovery. Although only one in vitro study on the DNA binding mode of apigenin (APG) has been conducted, there have been no electrochemical and theoretical studies reported. We hereby report the mechanism of binding interaction of APG and a new class of sulfonamide-modified flavonoids, apigenin disulfonamide (ADSAM) and apigenin trisulfonamide (ATSAM), with deoxyribonucleic acid (DNA). This study was conducted using multispectroscopic instrumentation techniques, which include UV-vis absorption, thermal denaturation, fluorescence, and Fourier transform infrared (FTIR) spectroscopy, and electrochemical and viscosity measurement methods. Also, molecular docking studies were conducted at room temperature under physiological conditions (pH 7.4). The molecular docking studies showed that, in all cases, the lowest energy docking poses bind to the minor groove of DNA and the apigenin-DNA complex was stabilized by several hydrogen bonds. Also, π-sulfur interactions played a role in the stabilization of the ADSAM-DNA and ATSAM-DNA complexes. The binding affinities of the lowest energy docking pose (schematic diagram of table of content (TOC)) of APG-DNA, ADSAM-DNA, and ATSAM-DNA complexes were found to be -8.2, -8.5, and -8.4 kcal mol-1, respectively. The electrochemical binding constants K b were determined to be (1.05 × 105) ± 0.04, (0.47 × 105) ± 0.02, and (8.13 × 105) ± 0.03 for APG, ADSAM, and ATSAM, respectively (all of the tests were run in triplicate and expressed as the mean and standard deviation (SD)). The K b constants calculated for APG, ADSAM, and ATSAM are in harmony for all techniques. As a result of the incorporation of dimethylsulfamate groups into the APG structure, in the ADSAM-dsDNA and ATSAM-dsDNA complexes, in addition to hydrogen bonds, π-sulfur interactions have also contributed to the stabilization of the ligand-DNA complexes. This work provides new insights that could lead to the development of prospective drugs and vaccines.

10.
RSC Adv ; 10(42): 25046-25058, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35517443

RESUMEN

Flavonoids exhibit essential but limited biological properties which can be enhanced through chemical modifications. In this study, we designed, synthesized, and characterized two novel flavonoid derivatives, quercetin penta-acetamide (1S3) and apigenin tri-acetamide (2S3). These compounds were confirmed using (1H, 13C) NMR, UV-Vis, and FT-IR characterizations. Their interaction with fish sperm DNA (FS-DNA) at physiological pH was investigated by UV-Vis and fluorescence spectrophotometry. The binding constant (K b) for the UV-Vis experiment was found to be 1.43 ± 0.3 × 104 M-1 for 1S3 and 2.08 ± 0.2 × 104 M-1 for 2S3. The binding constants (K SV) for the fluorescence quenching experiment were 1.83 × 104 M-1 and 1.96 × 104 M-1 for 1S3 and 2S3, respectively. Based on molecular modeling and docking studies, the binding affinities were found to be -7.9 and -9.1 kcal mol-1, for 1S3 and 2S3, respectively. The compound-DNA docked model correlated with our experimental results, and they are groove binders. Furthermore, mutagenicity potential was examined. 1S3 and its metabolites showed no mutagenic activity for both TA98 and TA100 strains. 2S3 did not show any mutagenic activity for the strain TA 98, while its metabolites were only active at high doses. Both 2S3 and its metabolites showed mutagenic activity in the TA100 strain.

11.
RSC Adv ; 10(10): 5894-5904, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35497427

RESUMEN

Palladium is a versatile catalyst, but the synthesis of palladium nanoparticles (PdNPs) is usually attained at a high temperature in the range of 160 °C to 200 °C using toxic reducing agents such as sodium borohydride. We report the synthesis of PdNPs using a low-cost and environmentally-friendly route at ambient temperatures. Quercetin diphosphate (QDP), a naturally-derived flavonoid, was employed as a reducing, capping, and stabilizing agent. The effect of temperature was optimized to produce perfectly spherical PdNP nanoparticles with sizes ranging from 0.1 to 0.3 microns in diameter. At relatively higher concentration of QDP, significantly smaller particles were produced with a size distribution of 1-7 nm. Perfectly spherical PdNP nanoparticles are a rare occurrence, especially under ambient room temperature conditions with fast reaction time. The formation of the nanoparticles was confirmed using UV-vis, TEM, EDS, and XRD. HRTEM demonstrated the lattice structure of the PdNPs. The synthesized PdNPs were also tested for their antifungal properties against Colletotrichum gloeosporioides and Fusarium oxysporum. Results showed that the size of the PdNPs played a critical role in their antifungal activity. However, for F. oxysporum, other factors beyond size could affect the antifungal activity including fine-scale, nutrient composition, and target organisms.

12.
ACS Omega ; 4(7): 12865-12871, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460413

RESUMEN

The surge of resistant food pathogens is a major threat worldwide. Previous research conducted on phytochemicals has shown their antibacterial activity against pathogenic bacteria. The design of antimicrobial agents to curb pathogenic disease remains a challenge demanding critical attention. Flavonoids such as apigenin and quercetin were evaluated against Gram-positive and Gram-negative bacteria. The results indicated that the antibacterial activity of each flavonoid occurred at a different minimum inhibitory concentration. However, the antimicrobial activity results of the modified flavonoids were also reported, and it was observed that the Gram-positive bacteria were more susceptible in comparison to the Gram-negative bacteria. The cell wall structure of the Gram-positive and Gram-negative bacteria could be the main reason for the bacteria susceptibility. Modified flavonoids could be used as a suitable alternative antimicrobial agent for the treatment of infectious diseases. Our results indicated 100% inhibition of Listeria monocytogenes, Pseudomonas aeruginosa, and Aeromonas hydrophila with modified flavonoids.

13.
ACS Omega ; 4(4): 6511-6520, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31179406

RESUMEN

The demand for safer design and synthesis of gold nanoparticles (AuNPs) is on the increase with the ultimate goal of producing clean nanomaterials for biological applications. We hereby present a rapid, greener, and photochemical synthesis of gold nanoplates with sizes ranging from 10 to 200 nm using water-soluble quercetin diphosphate (QDP) macromolecules. The synthesis was achieved in water without the use of surfactants, reducing agents, or polymers. The edge length of the triangular nanoplates ranged from 50 to 1200 nm. Furthermore, the reduction of methylene blue was used to investigate the catalytic activity of AuNPs. The catalytic activity of triangular AuNPs was three times higher than that of the spherical AuNPs based on kinetic rate constants (k). The rate constants were 3.44 × 10-2 and 1.11 × 10-2 s-1 for triangular and spherical AuNPs, respectively. The X-ray diffraction data of gold nanoplates synthesized by this method exhibited that the nanocrystals were mainly dominated by (111) facets which are in agreement to the nanoplates synthesized by using thermal and chemical approaches. The calculated relative diffraction peak intensity of (200), (220), and (311) in comparison with (111) was found to be 0.35, 0.17, and 0.15, respectively, which were lower than the corresponding standard values (JCPDS 04-0784). For example, (200)/(111) = 0.35 compared to 0.52 obtained from the standard (JCPDS 04-0784), indicating that the gold nanoplates are dominated by (111) facets. The calculated lattice from selected area electron diffraction data of the as-synthesized and after 1 year nanoplates was 4.060 and 4.088 Å, respectively. Our calculations were found to be in agreement with 4.078 Å for face-centered cubic gold (JCPDS 04-0784) and literature values of 4.07 Å. The computed QDP-Au complex demonstrated that the reduction process took place in the B ring of QDP. This approach contributes immensely to promoting the ideals of sustainable nanotechnology by eradicating the use of hazardous and toxic organic solvents.

14.
RSC Adv ; 8(9): 4649-4661, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33489091

RESUMEN

We hereby present a novel greener and ecofriendly synthesis of anisotropic silver nanoparticles (AgNPs) using water soluble quercetin diphosphate (QDP). QDP was employed as a reducing, capping and stabilizing agent at room temperature without any extraneous reagents. The purpose of this study was to determine the effects of modified quercetin pentaphosphate silver nanoparticles (QPP-AgNPs) and quercetin diphosphate derived silver nanoparticles (QDP-AgNPs) on microbial growth and expressions of virulence-related genes in Escherichia coli SM10. The gene expression analysis was carried out for 12 genes which are related to virulence and stress in E. coli SM10, namely: RpoD, RpoS, ibpB, clpB, uspA, fliC, fimH, fimF, kdpE, artJ, hyaA, and gyrA. Results showed that QDP-AgNPs reduced the swarming motility by 98% which correlated with the reduction in the expression of FliC flagellar gene. A simultaneous increase in the expression of the fimbrial genes FimH and FimF that are related to motility was recorded. In contrast, treatment of the microbes with QPP-AgNPs resulted in 90% of the swarming motility at different patterns compared to QDP-AgNPs treatment for the gene expressions of motility elements. The study revealed that QDP-AgNPs up-regulated the stress related RpoD and ibpB expressions, while QPP-AgNPs up-regulated the stress related RpoS and uspA gene expressions. However, both QDP-AgNPs and QPP-AgNPs up-regulated kpdE, artJ and gry at different levels. QDP-AgNPs were also tested for their antibacterial and antifungal activities, which showed µmolar cidal activity. The growth kinetics of both Gram (-) and Gram (+) bacteria were strongly altered by QDP-AgNPs activity. Energy dispersive absorption spectroscopy (EDS) studies revealed that silver ions and/or the nanoparticles themselves transferred into bacterial cells. To the best of our knowledge, this is the first report ofstudying the genetic and kinetic response of bacteria to modified quercetin phosphate mediated silver nanoparticles and we hereby report that the molecules used to synthesize AgNPs bring about a strong effect on AgNPs manipulatory activity on the tested 12-genes.

15.
Sci Total Environ ; 563-564: 977-86, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26765510

RESUMEN

Greener nanosynthesis utilizes fewer amounts of materials, water, and energy; while reducing or replacing the need for organic solvents. A novel approach is presented using naturally-derived flavonoids including Quercetin pentaphosphate (QPP), Quercetin sulfonic acid (QSA) and Apigenin Triphosphate (ATRP). These water soluble, phosphorylated flavonoids were utilized both as reducing agent and stabilizer. The synthesis was achieved at room temperature using water as a solvent and it requires no capping agents. The efficiency of the resulting silver nanoparticle synthesis was compared with naturally-occurring flavonoid such as Quercetin (QCR). Results show that QCR reduced Ag(+) faster followed by QPP, QSA and ATRP respectively. This is the first evidence of direct utilization of QCR for synthesis of silver nanoparticles (AgNPs) in water. The percentage conversion of Ag(+) to Ag(0) was determined to be 96% after 35min. The synthesized nanoparticles were characterized using Transmission electron microscopy (TEM), Energy dispersive absorption spectroscopy (EDS), UV-vis spectroscopy, High resolution TEM (HR-TEM) with selected area electron diffraction (SAED). The particle sizes ranged from 2 to 80nm with an average size of 22nm and in the case of ATRP, the nanoparticle shapes varied from spherical to hexagonal with dispersed particle size ranging from 2 to 30nm. Crystallinity was confirmed by XRD and the SAED of (111), (200), and the fringes observed in HRTEM images. Results were in agreement with the UV resonance peaks of 369-440nm. The particles also exhibit excellent antibacterial activity against Staphylococcus epidermidis, Escherichia coli and Citrobacter freundii in water.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Flavonoides/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Plata/química , Antibacterianos/análisis , Citrobacter freundii/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Staphylococcus epidermidis/efectos de los fármacos
16.
Environ Sci Process Impacts ; 18(3): 306-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26782777

RESUMEN

Lead is currently ranked the number one heavy metal pollutant with a maximum contaminant level (MCL) of 0.015 mg L(-1). The use of organic solvent-free methods to immobilize lead from the environment is attracting the attention of scientists and environmental engineers. This study reports the application of water soluble quercetin pentaphosphate (QPP), a derivative of quercetin, for the detection and immobilization of Pb(2+) from water and soil samples. The techniques employed include UV-visible, fluorescence, atomic absorption; inductively coupled plasma optical emission and Fourier transform infrared (FTIR) techniques. Results indicated the formation of a QPP-Pb complex that inhibits the fluorescence intensity of the parent molecule. The fluorimetric limit of detection was found to be 3.46 × 10(-4) M. The QPP-Pb complex exhibited a corresponding stoichiometry with the predominant complex PX2. A Scatchard plot of y = -4 × 10(6)x + 2916.3 was observed with a negative slope giving an equilibrium constant of 4 × 10(6) M(-1) and 5.4 × 10(5) M(-1) in acidic and alkaline conditions respectively. Results show 90.4% and 91.5% lead(ii) immobilization from BRS and BU soil samples respectively. On the other hand, 91% lead immobilization efficiency from a water sample was achieved at room temperature and is in compliance with the MCL level of 15 ppm at ∼3.82% error margin. This approach does not require the use of organic solvents or the disposal of large amounts of sludge. Once complexed with lead, QPP may not release phosphate to cause any secondary pollution.


Asunto(s)
Plomo/química , Fosfatos/química , Quercetina/análogos & derivados , Quercetina/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Contaminación Ambiental/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA