RESUMEN
BACKGROUND: Clinical exome sequencing (CES) provides a comprehensive and effective analysis of relevant disease-associated genes in a cost-effective manner compared to whole exome sequencing. Although several studies have focused on the diagnostic yield of CES, no study has assessed predictors of CES utility among patients with various Mendelian phenotypes. We assessed the effectiveness of CES as a first-level genetic test for molecular diagnosis in patients with a Mendelian phenotype and explored independent predictors of the clinical utility of CES. RESULTS: Between January 2016 and December 2019, 603 patients (426 probands and 177 siblings) underwent CES at the Department of Molecular Medicine of the University Hospital of Nancy. The median age of the probands was 34 years (IQR, 12-48), and the proportion of males was 46.9% (200/426). Adults and children represented 64.8% (276/426) and 35.2% (150/426), respectively. The median test-to-report time was 5.6 months (IQR, 4.1-7.2). CES revealed 203 pathogenic or likely pathogenic variants in 160 patients, corresponding to a diagnostic yield of 37.6% (160/426). Independent predictors of CES utility were criteria strongly suggestive of an extreme phenotype, including pediatric presentation and patient phenotypes associated with an increased risk of a priori probability of a monogenic disorder, the inclusion of at least one family member in addition to the proband, and a CES prescription performed by an expert in the field of rare genetic disorders. CONCLUSIONS: Based on a large dataset of consecutive patients with various Mendelian phenotypes referred for CES as a first-tier genetic test, we report a diagnostic yield of ~ 40% and several independent predictors of CES utility that might improve CES diagnostic efficiency.
Asunto(s)
Pruebas Genéticas , Hermanos , Masculino , Humanos , Secuenciación del Exoma , Pruebas Genéticas/métodos , Fenotipo , Derivación y ConsultaRESUMEN
AIM: Renal dysfunction is a common complication of cirrhosis, occurring either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. To date, no study has comprehensively assessed multiple renal function parameters in hospitalized patients with cirrhosis through a multiparametric analysis of renal biochemistry markers. METHODS: We conducted a retrospective, observational study including all consecutive patients hospitalized with cirrhosis who underwent a 43-multiparametric renal function assessment between January 1, 2021, and June 30, 2023. RESULTS: All patients showed at least one of the following renal abnormalities: Kidney Disease: Improving Global Outcomes stage G2 or higher, sodium and/or chloride excretion fraction <1%, electrolyte-free water clearance <0.4 mL/min, or tubular maximum phosphate reabsorption capacity <0.8 mmol/L. The estimated glomerular filtration rate equations significantly overestimated the measured creatinine clearance with median differences of +14 mL/min/1.73 m2 (95% CI 6-29) and +9 mL/min/1.73 m2 (95% CI 2-15) for European Kidney Function Consortium equations, respectively. Notably, 54% and 39% of patients demonstrated estimated glomerular filtration rates exceeding 30% of the measured creatinine clearance when the Chronic Kidney Disease - Epidemiology Collaboration and European Kidney Function Consortium formulas were employed, respectively. Substantial discrepancies in Kidney Disease: Improving Global Outcomes stage assignments were observed between the estimated glomerular filtration rate- and measured creatinine clearance-based assessments. CONCLUSIONS: This study underscores the value of a multiparametric renal function assessment as a routine tool for evaluating renal function in patients with cirrhosis. A high prevalence of medically actionable renal abnormalities spanning multiple renal function modules, including alterations in glomerular function, salt and solute-free water excretion, and proximal tubule phosphate reabsorption, has been demonstrated in hospitalized patients with cirrhosis.
RESUMEN
AIM: This study evaluated the bias and accuracy of the CKD-EPI/CKiD and EKFC equations compared with the reference exogenous tracer-based assessment of glomerular filtration rate (GFR) in adult and pediatric patients according to their renal transplant status. METHODS: We assessed the bias and P30 accuracy of the CKD-EPI/CKiD and EKFC equations compared with iohexol-based GFR measurement. RESULTS: In the overall population (n = 59), the median age was 29 years (IQR, 16.0-46.0) and the median measured GFR was 73.9 mL/min/1.73m2 (IQR, 57.3-84.6). Among non-kidney transplant patients, the median was 77.7 mL/min/1.73m2 (IQR, 59.3-86.5), while among kidney transplant patients, it was 60.5 mL/min/1.73m2 (IQR, 54.2-66.8). The bias associated with the EKFC and CKD-EPI/CKiD equations was significantly higher among kidney transplant patients than among non-kidney transplant patients, with a difference between medians (Hodges-Lehmann) of +10.4 mL/min/1.73m2 (95% CI, 2.2-18.9; p = .02) for the EKFC and +12.1 mL/min/1.73m2 (95% CI, 4.2-21.4; p = .006) for the CKD-EPI/CKiD equations. In multivariable analysis, kidney transplant status emerged as an independent factor associated with a bias of >3.4 mL/min/1.73m2 (odds ratio, 7.7; 95% CI, 1.4-43.3; p = .02) for the EKFC equation and a bias of >13.4 mL/min/1.73m2 (odds ratio, 15.0; 95% CI, 2.6-85.7; p = .002) for the CKD-EPI/CKiD equations. CONCLUSION: In our study, which included adolescent and young adult kidney transplant patients, both the CKD-EPI/CKiD and EKFC equations tended to overestimate the measured glomerular filtration rate, with the EKFC equation exhibiting less bias. Renal transplant status significantly influenced the degree of estimation bias.
Asunto(s)
Tasa de Filtración Glomerular , Trasplante de Riñón , Insuficiencia Renal Crónica , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Adolescente , Femenino , Adulto , Adulto Joven , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/diagnóstico , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Yohexol/administración & dosificación , Reproducibilidad de los Resultados , Riñón/fisiopatología , Factores de Edad , Modelos Biológicos , Creatinina/sangreRESUMEN
OBJECTIVE: The aim of this study was to systematically review the evidence across studies that assessed DNA methylome variations in association with food allergy (FA). DESIGN: A systematic review of the literature and meta-analysis were carried out within several databases. However, the risk of bias in the included articles was not evaluated. DATA SOURCES: PubMed, Cochrane Database of Systematic Reviews, and Web of Science were used to search up to July 2022. ELIGIBILITY CRITERIA: We included targeted and epigenome-wide association studies (EWASs) that assessed DNA methylome alterations in association with FA in adult or paediatric populations. RESULTS: Among 366 publications, only 16 were retained, which were mainly focused on FA in children. Seven candidate gene-targeted studies found associations in Th1/Th2 imbalance (IL4, IL5, IL10, INFG, IL2 and IL12B genes), regulatory T cell function (FOXP3 gene), Toll-like receptors pathway (TLR2, CD14 genes) and digestive barrier integrity (FLG gene). Nine EWAS assessed the association with peanut allergy (n = 3), cow's milk allergy (n = 2) or various food allergens (n = 4). They highlighted 11 differentially methylated loci in at least two studies (RPS6KA2, CAMTA1, CTBP2, RYR2, TRAPPC9, DOCK1, GALNTL4, HDAC4, UMODL1, ZAK and TNS3 genes). Among them, CAMTA1 and RPS6KA2, and CTBP2 are involved in regulatory T cell function and Th2 cell differentiation, respectively. Gene-functional analysis revealed two enriched gene clusters involved in immune responses and protein phosphorylation. ChIP-X Enrichment Analysis 3 showed eight significant transcription factors (RXRA, ZBTB7A, ESR1, TCF3, MYOD1, CTCF, GATA3 and CBX2). Ingenuity Pathway Analysis identified canonical pathways involved, among other, in B cell development, pathogen-induced cytokine storm signalling pathway and dendritic cell maturation. CONCLUSION: This review highlights the involvement of epigenomic alterations of loci in Th1/Th2 and regulatory T cell differentiation in both candidate gene studies and EWAS. These alterations provide a better insight into the mechanistic aspects in FA pathogenesis and may guide the development of epigenome-based biomarkers for FA.
Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad a la Leche , Femenino , Animales , Bovinos , Epigenoma , Línea Celular Tumoral , Factores de Transcripción , Proteínas de Unión al ADNRESUMEN
BACKGROUND: Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS: We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS: The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION: WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-ß-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING: Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.
Asunto(s)
Trastornos Relacionados con Alcohol/genética , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas/genética , Aciltransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fosfolipasas A2 Calcio-Independiente/genética , Polimorfismo de Nucleótido Simple , Proteínas Wnt/genética , Proteína Wnt3A/genética , Adulto JovenRESUMEN
Vitamin B12 or cobalamin (Cbl) metabolism can be affected by genetic defects leading to defective activity of either methylmalonyl-CoA mutase or methionine synthase or both enzymes. Patients usually present with a wide spectrum of pathologies suggesting that various cellular processes could be affected by modifications in gene expression. We have previously demonstrated that these genetic defects are associated with subcellular mislocalization of RNA-binding proteins (RBP) and subsequent altered nucleo-cytoplasmic shuttling of mRNAs. In order to characterize the possible changes of gene expression in these diseases, we have investigated global gene expression in fibroblasts from patients with cblC and cblG inherited disorders by RNA-seq. The most differentially expressed genes are strongly associated with developmental processes, neurological, ophthalmologic and cardiovascular diseases. These associations are consistent with the clinical presentation of cblC and cblG disorders. Multivariate analysis of transcript processing revaled splicing alterations that led to dramatic changes in cytoskeleton organization, response to stress, methylation of macromolecules and RNA binding. The RNA motifs associated with this differential splicing reflected a potential role of RBP such as HuR and HNRNPL. Proteomic analysis confirmed that mRNA processing was significantly disturbed. This study reports a dramatic alteration of gene expression in fibroblasts of patients with cblC and cblG disorders, which resulted partly from disturbed function of RBP. These data suggest to evaluate the rescue of the mislocalization of RBP as a potential strategy in the treatment of severe cases who are resistant to classical treatments with co-enzyme supplements.
Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Oxidorreductasas/genética , Deficiencia de Vitamina B 12/genética , Vitamina B 12/genética , Empalme Alternativo/genética , Línea Celular , Proteína 1 Similar a ELAV/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Proteómica , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/patologíaRESUMEN
Inherited disorders of cobalamin (cbl) metabolism (cblA-J) result in accumulation of methylmalonic acid (MMA) and/or homocystinuria (HCU). Clinical presentation includes ophthalmological manifestations related to retina, optic nerve and posterior visual alterations, mainly reported in cblC and sporadically in other cbl inborn errors.We searched MEDLINE EMBASE and Cochrane Library, and analyzed articles reporting ocular manifestations in cbl inborn errors. Out of 166 studies a total of 52 studies reporting 163 cbl and 24 mut cases were included. Ocular manifestations were found in all cbl defects except for cblB and cblD-MMA; cblC was the most frequent disorder affecting 137 (84.0%) patients. The c.271dupA was the most common pathogenic variant, accounting for 70/105 (66.7%) cases. One hundred and thirty-seven out of 154 (88.9%) patients presented with early-onset disease (0-12 months). Nystagmus and strabismus were observed in all groups with the exception of MMA patients while maculopathy and peripheral retinal degeneration were almost exclusively found in MMA-HCU patients. Optic nerve damage ranging from mild temporal disc pallor to complete atrophy was prevalent in MMA-HCU.and MMA groups. Nystagmus was frequent in early-onset patients. Retinal and macular degeneration worsened despite early treatment and stabilized systemic function in these patients. The functional prognosis remains poor with final visual acuity < 20/200 in 55.6% (25/45) of cases. In conclusion, the spectrum of eye disease in Cbl patients depends on metabolic severity and age of onset. The development of visual manifestations over time despite early metabolic treatment point out the need for specific innovative therapies.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Homocistinuria , Degeneración Macular , Degeneración Retiniana , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Homocistinuria/complicaciones , Homocistinuria/genética , Humanos , Ácido Metilmalónico , Mutación , Retina/metabolismo , Vitamina B 12/metabolismoRESUMEN
The emergence of next-generation sequencing enabled a cost-effective and straightforward diagnostic approach to genetic disorders using clinical exome sequencing (CES) panels. We performed a retrospective observational study to assess the diagnostic yield of CES as a first-tier genetic test in 128 consecutive pediatric patients addressed to a referral center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. CES was performed using the TruSight One (4811 genes) or the TruSight One expanded (6699 genes) panel on an Illumina sequencing platform. The median age was 6.5 years (IQR 2.0-12.0) with 43% of males (55/128), and the median disease duration was 7 months (IQR 1-47). In the whole analysis, the CES diagnostic yield was 55% (70/128). The median test-to-report time was 5 months (IQR 4-7). According to CES indications, the CES diagnostic yields were 81% (21/26) for hyperlipidemia, 75% (6/8) for osteogenesis imperfecta, 64% (25/39) for metabolic disorders, 39% (10/26) for neurological disorders, and 28% (8/29) for the subgroup of patients with miscellaneous conditions. Our results demonstrate the usefulness of a CES-based diagnosis as a first-tier genetic test to establish a molecular diagnosis in pediatric patients with a suspected genetic disorder with a median test-to-report time of 5 months. It highlights the importance of a close interaction between the pediatrician with expertise in genetic disorders and the molecular medicine physician to optimize both CES indication and interpretation. Diagnostic yield of clinical exome sequencing (CES) as a first-tier genetic test for diagnosing genetic disorders in 128 consecutive pediatric patients referred to a reference center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. The CES diagnostic yields are reported in the whole population and patients' subgroups (hyperlipidemia, osteogenesis imperfecta, metabolic diseases, neurological disorders, miscellaneous conditions) (Icons made by Flaticon, flaticon.com; CC-BY-3.0).
Asunto(s)
Enfermedades del Sistema Nervioso , Osteogénesis Imperfecta , Niño , Exoma , Pruebas Genéticas/métodos , Humanos , Masculino , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Osteogénesis Imperfecta/genética , Derivación y ConsultaRESUMEN
Epigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B12) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases. It results from diverse genetic alterations. In alpha-thalassemia type α-ZF, a deletion removes HBA1 and HBQ1 genes and juxtaposes the antisense LUC7L gene to the HBA2 gene. In epi-cblC, the epimutation in the MMACHC promoter is produced by mutations in the antisense flanking gene PRDX1, which induces a prolonged antisense transcription through the MMACHC promoter. The presence of the epimutation in sperm, its transgenerational inheritance via the mutated PRDX1, and the high expression of PRDX1 in spermatogonia but its nearly undetectable transcription in spermatids and spermatocytes, suggest that the epimutation could be maintained during germline reprogramming and despite removal of aberrant transcription. The epivariation seen in the MMACHC promoter (0.95 × 10-3) is highly frequent compared to epivariations affecting other genes of the Online Catalog of Human Genes and Genetic Disorders in an epigenome-wide dataset of 23,116 individuals. This and the comparison of epigrams of two monozygotic twins suggest that the aberrant transcription could also be influenced by post-zygotic environmental exposures.
Asunto(s)
Enfermedades Metabólicas , Talasemia alfa , Metilación de ADN , Epigénesis Genética , Humanos , Masculino , Enfermedades Metabólicas/genética , Oxidorreductasas/genética , Semen , Talasemia alfa/genéticaRESUMEN
BACKGROUND: Nonimmediate (delayed)-allergic reactions to penicillins are common and some of them can be life-threatening. The genetic factors influencing these reactions are unknown/poorly known/poorly understood. We assessed the genetic predictors of a delayed penicillin allergy that cover the HLA loci. METHODS: Using next-generation sequencing (NGS), we genotyped the MHC region in 24 patients with delayed hypersensitivity compared with 20 patients with documented immediate hypersensitivity to penicillins recruited in Italy. Subsequently, we analyzed in silico Illumina Immunochip genotyping data that covered the HLA loci in 98 Spanish patients with delayed hypersensitivity and 315 with immediate hypersensitivity compared to 1,308 controls. RESULTS: The two alleles DRB3*02:02:01:02 and DRB3*02:02:01:01 were reported in twenty cases with delayed reactions (83%) and ten cases with immediate reactions (50%), but not in the Allele Frequency Net Database. Bearing at least one of the two alleles increased the risk of delayed reactions compared to immediate reactions, with an OR of 8.88 (95% CI, 3.37-23.32; p < .0001). The haplotype (ACAA) from rs9268835, rs6923504, rs6903608, and rs9268838 genetic variants of the HLA-DRB3 genomic region was significantly associated with an increased risk of delayed hypersensitivity to penicillins (OR, 1.7; 95% CI: 1.06-1.92; p = .001), but not immediate hypersensitivity. CONCLUSION: We showed that the HLA-DRB3 locus is strongly associated with an increased risk of delayed penicillin hypersensitivity, at least in Southwestern Europe. The determination of HLA-DRB3*02:02 alleles in the risk management of severe delayed hypersensitivity to penicillins should be evaluated further in larger population samples of different origins.
Asunto(s)
Hipersensibilidad a las Drogas , Hipersensibilidad Tardía , Hipersensibilidad Inmediata , Alelos , Hipersensibilidad a las Drogas/epidemiología , Genotipo , Cadenas HLA-DRB3/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hipersensibilidad Tardía/inducido químicamente , Hipersensibilidad Tardía/genética , Hipersensibilidad Inmediata/complicaciones , Penicilinas/efectos adversosRESUMEN
BACKGROUND: Many arguments suggest that neutrophils could play a prominent role in COVID-19. However, the role of key components of neutrophil innate immunity in severe forms of COVID-19 has deserved insufficient attention. We aimed to evaluate the involvement of neutrophil elastase, histone-DNA, and DNases in systemic and multi-organ manifestations of COVID-19. METHODS: We performed a multicenter study of markers of neutrophil innate immunity in 155 cases consecutively recruited in a screening center, local hospitals, and two regional university hospitals. The cases were evaluated according to clinical and biological markers of severity and multi-organ manifestations and compared to 35 healthy controls. RESULTS: Blood neutrophil elastase, histone-DNA, myeloperoxidase-DNA, and free dsDNA were dramatically increased, and DNase activity was decreased by 10-fold, compared with controls. Neutrophil elastase and histone-DNA were associated with intensive care admission, body temperature, lung damage, and markers of cardiovascular outcomes, renal failure, and increased interleukin-6 (IL-6), IL-8, and CXCR2. Neutrophil elastase was an independent predictor of the computed tomography score of COVID-19 lung damage and the number of affected organs, in multivariate analyses. The increased blood concentrations of NE and neutrophil extracellular traps were related to exacerbation of neutrophil stimulation through IL-8 and CXCR2 increased concentrations and increased serum DAMPs, and to impaired degradation of NETs as a consequence of the dramatic decrease in blood DNase activity. CONCLUSION: Our results point out the key role of neutrophil innate immunity exacerbation in COVID-19. Neutrophil elastase and DNase could be potential biomarkers and therapeutic targets of severe systemic manifestations of COVID-19.
Asunto(s)
COVID-19 , Trampas Extracelulares , Histonas , Humanos , Inmunidad Innata , Neutrófilos , SARS-CoV-2RESUMEN
PURPOSE: Blood culture contamination is still a frequently observed event and may lead to unnecessary antibiotic prescriptions and additional hazards and costs. However, in patients hospitalized in tertiary care, true bacteremias for pathogens that are classically considered as contaminants can be observed. We assessed the diagnostic accuracy of procalcitonin for differentiating blood culture contamination from bacteremia in patients with positive blood cultures for potential contaminants. METHODS: We carried out a retrospective, cross-sectional, observational study on consecutive patients hospitalized between January 2016 and May 2019 at the University Hospital of Nancy and who had a positive peripheral blood culture for a pathogen classically considered as a potential contaminant. RESULTS: During the study period, 156 patients were screened, and 154 were retained in the analysis. Among the variables that were significantly associated with a diagnosis of blood culture contamination in univariate analyses, four were maintained in multivariate logistic regression analysis: a number of positive blood culture bottles ≤ 2 (OR 23.76; 95% CI 1.94-291.12; P = 0.01), procalcitonin < 0.1 ng/mL (OR 14.88; 95% CI 1.62-136.47; P = 0.02), non-infection-related admission (OR 13.00; 95% CI 2.17-77.73; P = 0.005), and a percentage of positive blood culture bottles ≤ 25% (OR 12.15; 95% CI 2.02-73.15; P = 0.006). CONCLUSIONS: These data provide new evidence on the usefulness of plasma procalcitonin as a reliable diagnostic biomarker in the diagnostic algorithm of peripheral blood culture contamination among patients hospitalized in tertiary care. CLINICAL TRIAL: ClinicalTrials.gov #NCT04573894.
Asunto(s)
Bacteriemia , Cultivo de Sangre , Bacteriemia/diagnóstico , Estudios Transversales , Humanos , Polipéptido alfa Relacionado con Calcitonina , Estudios RetrospectivosRESUMEN
BACKGROUND: In patients with severe coronavirus disease 2019 (COVID-19), data are scarce and conflicting regarding whether chronic use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) influences disease outcomes. In patients with severe COVID-19, we assessed the association between chronic ACEI/ARB use and the occurrence of kidney, lung, heart, and liver dysfunctions and the severity of the inflammatory reaction as evaluated by biomarkers kinetics, and their association with disease outcomes. METHODS: We performed a retrospective longitudinal cohort study on consecutive patients with newly diagnosed severe COVID-19. Independent predictors were assessed through receiver operating characteristic analysis, time-series analysis, logistic regression analysis, and multilevel modeling for repeated measures. RESULTS: On the 149 patients included in the study 30% (44/149) were treated with ACEI/ARB. ACEI/ARB use was independently associated with the following biochemical variations: phosphorus >40 mg/L (odds ratio [OR], 3.35, 95% confidence interval [CI], 1.83-6.14), creatinine >10.1 mg/L (OR, 3.22, 2.28-4.54), and urea nitrogen (UN) >0.52 g/L (OR, 2.65, 95% CI, 1.89-3.73). ACEI/ARB use was independently associated with acute kidney injury stage ≥1 (OR, 3.28, 95% CI, 2.17-4.94). The daily dose of ACEI/ARB was independently associated with altered kidney markers with an increased risk of +25 to +31% per each 10 mg increment of lisinopril-dose equivalent. In multivariable multilevel modeling, UN >0.52 g/L was independently associated with the risk of acute respiratory failure (OR, 3.54, 95% CI, 1.05-11.96). CONCLUSIONS: Patients chronically treated with ACEI/ARB who have severe COVID-19 are at increased risk of acute kidney injury. In these patients, the increase in UN associated with ACEI/ARB use could predict the development of acute respiratory failure.
Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/virología , Antagonistas de Receptores de Angiotensina/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , COVID-19/complicaciones , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Femenino , Francia , Humanos , Riñón/efectos de los fármacos , Riñón/virología , Modelos Logísticos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Análisis Multinivel , Curva ROC , Derivación y Consulta , Estudios RetrospectivosRESUMEN
Hereditary spastic paraplegias (HSPs) are characterized by lower extremity spasticity and weakness. HSP is often caused by mutations in SPG genes, but it may also be produced by inborn errors of metabolism. We performed next-generation sequencing of 4813 genes in one adult twin pair with HSP and severe muscular weakness occurring at the same age. We found two pathogenic compound heterozygous variants in MTHFR, including a variant not referenced in international databases, c.197C>T (p.Pro66Leu) and a known variant, c.470G>A (p.Arg157Gln), and two heterozygous pathogenic variants in POLG, c.1760C>T (p.Pro587Leu) and c.752C>T (p.Thr251Ile). MTHFR and POLG mutations were consistent with the severe muscle weakness and the metabolic changes, including hyperhomocysteinemia and decreased activity of both N(5,10)methylenetetrahydrofolate reductase (MTHFR) and complexes I and II of the mitochondrial respiratory chain. These data suggest the potential role of MTHFR and POLG mutations through consequences on mitochondrial dysfunction in the occurrence of spastic paraparesis phenotype with combined metabolic, muscular, and neurological components.
Asunto(s)
ADN Polimerasa gamma/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Enfermedades Mitocondriales/genética , Paraparesia Espástica/genética , Paraplejía Espástica Hereditaria/genética , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Mutación , Paraparesia Espástica/diagnóstico , Análisis de Secuencia de ADN , Paraplejía Espástica Hereditaria/diagnóstico , Gemelos MonocigóticosRESUMEN
Drug hypersensitivity reactions (DHRs) are associated with high global morbidity and mortality. Cutaneous T cell-mediated reactions classically occur more than 6 hours after drug administration and include life-threatening conditions such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and hypersensitivity syndrome. Over the last 20 years, significant advances have been made in our understanding of the pathogenesis of DHRs with the identification of human leukocyte antigens as predisposing factors. This has led to the development of pharmacogenetic screening tests, such as HLA-B*57:01 in abacavir therapy, which has successfully reduced the incidence of abacavir hypersensitivity reactions. We have completed a PRISMA-compliant systematic review to identify genetic associations that have been reported in DHRs. In total, 105 studies (5554 cases and 123 548 controls) have been included in the review reporting genetic associations with carbamazepine (n = 31), other aromatic antiepileptic drugs (n = 24), abacavir (n = 11), nevirapine (n = 14), trimethoprim-sulfamethoxazole (n = 11), dapsone (n = 4), allopurinol (n = 10), and other drugs (n = 5). The most commonly reported genetic variants associated with DHRs are located in human leukocyte antigen genes and genes involved in drug metabolism pathways. Increasing our understanding of genetic variants that contribute to DHRs will allow us to improve diagnosis, develop new treatments, and predict and prevent DHRs in the future.
Asunto(s)
Síndrome de Hipersensibilidad a Medicamentos , Hipersensibilidad a las Drogas , Preparaciones Farmacéuticas , Síndrome de Stevens-Johnson , Carbamazepina , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad a las Drogas/epidemiología , Hipersensibilidad a las Drogas/genética , Síndrome de Hipersensibilidad a Medicamentos/diagnóstico , Síndrome de Hipersensibilidad a Medicamentos/epidemiología , Síndrome de Hipersensibilidad a Medicamentos/etiología , Antígenos HLA-B/genética , Humanos , Linfocitos TRESUMEN
AIMS: Patient-centered education improves glycemic control in subjects with type 1 diabetes (T1D). E-health technologies are widely used to support medical decision-making, patient advising or teleconsultations; however, the active participation of a patient is missing. Challenges remain whether e-health education can be effectively incorporated into clinical pathways. The purpose of the study was to examine the effects of e-health education, compared to standard care, on HbA1c. MATERIAL AND METHODS: We conducted a literature search (EMBASE, MEDLINE, The Cochrane Library and Web of Science) up to February 2018 for randomized controlled trials (RCTs) of Internet-/ mobile application-based educational interventions, with the active involvement of patients, provided in addition to, or substituting usual care in patients with T1D on intensive insulin therapy. The primary outcome was the standardized difference in means (SDM) of HbA1c change from baseline between intervention and comparator groups. RESULTS: Eight RCTs involving 757 subjects were included on 6335 screened citations. After excluding two trials with a high risk of bias from the meta-analysis, the HbA1c change from baseline did not significantly differ between intervention and comparator groups (SDM = -0.154, 95% CI: -0.335 to 0.025; P = 0.01, random-effect model). The number of studies is limited with a relatively short duration. Reporting of educational outcomes was not rigorous. CONCLUSIONS: The effect of e-health educational interventions on HbA1c in patients with T1D is comparable to the standard care. This review highlights the need for further well-designed RCTs that will investigate the opportunities of incorporating e-health education into clinical pathways.
Asunto(s)
Biomarcadores/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Educación del Paciente como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Telemedicina/métodos , Glucemia/análisis , Diabetes Mellitus Tipo 1/patología , Hemoglobina Glucada/análisis , Humanos , Pronóstico , Calidad de VidaRESUMEN
Vitamin D-dependent rickets type 1B (VDDR1B) is an autosomal semidominant genetic disorder caused by a deficiency in CYP2R1, which encodes vitamin D 25-hydroxylase, an enzyme that plays a crucial role in the conversion of vitamin D to 25-dihydroxyvitamin D3. VDDR1B is a severe form of rickets that occurs during infancy and which is responsive to 25-OH vitamin D supplementation. We studied three adult patients from a multi-consanguineous family with VDDR1B. They have been diagnosed with pseudo-nutritional rickets and treated during their adolescence with 25-OH vitamin D. These patients stopped their treatments at the end of adolescence and were contacted 14 to 17 years later when VDDR1B diagnosis was carried out in their niece and nephews. These three patients had undetectable 25-OH vitamin D, but normal levels of plasma 1-25(OH)2 vitamin D. All patients had a hip bone mineral density and a normal vertebral despite osteoarthritis degenerative lesions which may impact BMD evaluation. These findings show that vitamin D supplementation has a questionable effect, if any, for osteoporosis prevention in adulthood in contrast to its crucial importance during infancy and adolescence.
Asunto(s)
Densidad Ósea , Colestanotriol 26-Monooxigenasa/deficiencia , Raquitismo Hipofosfatémico Familiar/complicaciones , Adolescente , Adulto , Consanguinidad , Familia 2 del Citocromo P450 , Humanos , Vitamina D/sangreRESUMEN
Neural tube defects (NTD) result from complex mechanisms between genes, nutrition and environment. The identification of genetic predictors by genome exome sequencing and their influence on genome methylation need further consideration. Gene variants related to 1-CM metabolism (1-CM) could influence the methylation of genes involved in neural tube embryogenesis through impaired synthesis of S-adenosyl methionine. We performed exome sequencing of 6116 genes referenced in OMIM and NTD risk and genome-wide methylation in 23 NTD cases. We replicated the most significant associations in 81 other cases. The analysis of exome sequencing identified one gene of 1-CM, LRP2, and one gene of Sonic Hedgehog (SHH), GLI3, in the 23 NTD cases. The analysis restricted to genes of 1-CM and neural tube embryogenesis identified five gene predictors of 1-CM (LRP2, rs137983840; MMAA, rs148142853; TCN2, rs35838082; FPGS, rs41306702; BHMT, rs763726268) and two of SHH (GLI3, rs35364414; MKS1, rs151023718). We replicated the association of TCN2, BHMT and GLI3 with NTD risk in the 81 cases. We found a significant hemimethylation of CFAP46 that may influence SHH activation in one case, who carried risk alleles in BHMT, LRP2, MMAA and GLI3. In conclusion, we identified new candidate genes and rare variants that highlight an interacting influence of genes involved in SHH and 1-CM in the puzzle of genetic components of NTD risk.
Asunto(s)
Biomarcadores/metabolismo , Carbono/metabolismo , Exoma , Proteínas Hedgehog/genética , Defectos del Tubo Neural/genética , Vitamina B 12/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Transducción de Señal , Secuenciación del Exoma , Adulto JovenRESUMEN
BACKGROUND: Orofacial cleft (OFC) is the most prevalent craniofacial birth defect. Genes involved in one-carbon, folate and vitamin B12 metabolisms have been associated with OFC but no study performed a concomitant assessment on genes involved in these three pathways. OBJECTIVE: We looked for potential genetic variants associated with OFC using an exhaustive gene panel of one-carbon metabolism. METHODS: We performed a case-control discovery study on children with OFC (236 cases, 145 controls) and their related mothers (186 cases, 127 controls). We performed a replication study on the top significant genetic variant in an independent group from Belgium (248 cases, 225 controls). RESULTS: In the discovery study on 'mothers', the CBS locus reached array-wide significance (p=9.13×10-6; Bonferroni p=4.77×10-3; OR 0.47 (0.33 to 0.66)) among the 519 haplotypes tested for their association with OFC risk. Within the CBS haplotype block (rs2124459, rs6586282, rs4920037, rs234705, rs234709), the rs2124459 was the most significantly associated with a reduced risk of OFC (p=1.77×10-4; Bonferroni p=2.00×10-2; OR 0.53 (0.38 to 0.74), minor allele). The rs2124459 was associated with a reduced risk of cleft palate (CP) (p=6.78×10-5; Bonferroni p=7.80×10-3; OR 0.40 (0.25 to 0.63)). In the 'children' group, the rs2124459 was associated with a reduced risk of CP (p=0.02; OR 0.61 (0.40 to 0.93), minor allele). The association between rs2124459 and reduced risk of CP was replicated in an independent children population from Belgium (p=0.02; OR 0.64 (0.44 to 0.93), minor allele). CONCLUSIONS: The CBS rs2124459 was associated with a reduced risk of CP in both French and Belgian populations. These results highlight the prominent involvement of the vitamin B6-dependent transsulfuration pathway of homocysteine in OFC risk and the interest for evaluating vitamin B6 status in further population studies.
Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Cistationina betasintasa/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Bélgica , Estudios de Casos y Controles , Niño , Preescolar , Labio Leporino/complicaciones , Labio Leporino/metabolismo , Fisura del Paladar/complicaciones , Fisura del Paladar/metabolismo , Femenino , Francia , Estudios de Asociación Genética , Haplotipos , Humanos , Lactante , MasculinoRESUMEN
BACKGROUND: Immediate reactions to ß-lactams are the most common causes of anaphylactic reactions and can be life-threatening. The few known genetic factors influencing these reactions suggest a link with atopy and inflammation. OBJECTIVE: We performed a fine-mapping genome-wide association study of the genetic predictors of ß-lactam allergy to better understand the underlying mechanisms. METHODS: We studied 387 patients with immediate allergic reactions to ß-lactams and 1124 paired control subjects from Spain. We replicated the results in 299 patients and 362 paired control subjects from Italy. RESULTS: We found significant associations with the single nucleotide polymorphisms rs4958427 of ZNF300 (c.64-471G>A, P = 9.9 × 10(-9)), rs17612 of C5 (c.4311A>C [p.Glu1437Asp], P = 7.5 × 10(-7)), rs7754768 and rs9268832 of the HLA-DRA | HLA-DRB5 interregion (P = 1.6 × 10(-6) and 4.9 × 10(-6)), and rs7192 of HLA-DRA (c.724T>G [p.Leu242Val], P = 7.4 × 10(-6)) in an allelic model, with similar results in an additive model. Single nucleotide polymorphisms of HLA-DRA and ZNF300 predicted skin test positivity to amoxicillin and other penicillins but not to cephalosporins. A haplotype block in HLA-DRA and the HLA-DRA | HLA-DRB5 interregion encompassed a motif involved in balanced expression of the α- and ß-chains of MHC class II, whereas rs7192 was predicted to influence α-chain conformation. HLA-DRA rs7192 and rs8084 were significantly associated with allergy to penicillins and amoxicillin (P = 6.0 × 10(-4) and P = 4.0 × 10(-4), respectively) but not to cephalosporins in the replication study. CONCLUSIONS: Gene variants of HLA-DRA and the HLA-DRA | HLA-DRB5 interregion were significant predictors of allergy to penicillins but not to cephalosporins. These data suggest complex gene-environment interactions in which genetic susceptibility of HLA type 2 antigen presentation plays a central role.