Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Comput Biol Med ; 62: 185-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956346

RESUMEN

This work is focused on the detailed computer simulation of the key stages involved in a shape memory alloy (SMA) osteosynthesis bone stapling procedure. To this end, a recently developed three-dimensional constitutive SMA material model was characterized from test data of three simple uniaxial-isothermal-tension experiments for powder metallurgically processed nickel-rich NiTi (PM/NiTi-P) material. The calibrated model was subsequently used under the complex, thermomechanical loading conditions involved in the surgical procedure using the body-temperature-activated PM/NiTi-P bone staple. Our aim here is to assess the immediate and post-surgical performance characteristics of the stapling operation using the material model. From this study: (1) it was found that adequate compressive forces were developed by the PM/NiTi-P bone staple, with the tendency of this force to even increase under sustained thermal loading due to the intrinsic "inverse relaxation phenomena" in the SMA material, (2) the simulation results correlated well with those from experimental measurements, (3) the body-temperature-activated PM/NiTi-P staple was proved to be clinically viable, providing a stable clamping force needed for speedy coaptation of the fractured bones, and (4) these realistic assessments crucially depend on the use of suitable and comprehensive SMA material models.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Níquel , Estrés Mecánico , Suturas , Titanio , Humanos
2.
J Mech Behav Biomed Mater ; 49: 43-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25988791

RESUMEN

The work is focused on a detailed simulation of the key stages involved in the NiTinol self-expanding stenting surgical procedure; i.e., crimping, deployment, SMA activation, as well as post-surgery steady-state cyclic behavior mimicking the systolic-to-diastolic pressure oscillations. To this end, a general multi-mechanism SMA model was utilized, whose calibration was completed using the test data from simple isothermal uniaxial tension experiments. The emphasis in the study was placed on the comparison of two alternative SMA activation protocols, in terms of both the immediate and long-term (post-surgery) performance characteristics. The first is 'hard' mechanical activation utilizing superelasticity, and the second is 'soft' thermal activation relying upon the combined one-way shape memory effect and constrained-recovery characteristics of the NiTinol material. The important findings are (1) the thermal activation protocol is far superior compared to the mechanical counterpart, from the point of view of lower magnitudes of the induced outward chronic forces, lesser developed stresses in the host tissue, as well as higher compression ratio with lesser crimping force for the same geometry of initial stent memory configuration, (2) the thermal activation protocol completely bypassed the complications of maintaining the high restraining force during deployment of the stent, and (3) there is no indication of any detrimental functional fatigue/degradation in the cured stenotic artery during cyclic pressure oscillations.


Asunto(s)
Aleaciones , Ensayo de Materiales , Fenómenos Mecánicos , Modelos Teóricos , Stents , Procedimientos Quirúrgicos Operativos , Temperatura , Calibración , Elasticidad , Níquel , Resistencia al Corte , Estrés Mecánico , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA