Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(7): 2578-83, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550286

RESUMEN

The transforming growth factor ß (TGFß) superfamily of signaling pathways, including the bone morphogenetic protein (BMP) subfamily of ligands and receptors, controls a myriad of developmental processes across metazoan biology. Transport of the receptors from the plasma membrane to endosomes has been proposed to promote TGFß signal transduction and shape BMP-signaling gradients throughout development. However, how postendocytic trafficking of BMP receptors contributes to the regulation of signal transduction has remained enigmatic. Here we report that the intracellular domain of Caenorhabditis elegans BMP type I receptor SMA-6 (small-6) binds to the retromer complex, and in retromer mutants, SMA-6 is degraded because of its missorting to lysosomes. Surprisingly, we find that the type II BMP receptor, DAF-4 (dauer formation-defective-4), is retromer-independent and recycles via a distinct pathway mediated by ARF-6 (ADP-ribosylation factor-6). Importantly, we find that loss of retromer blocks BMP signaling in multiple tissues. Taken together, our results indicate a mechanism that separates the type I and type II receptors during receptor recycling, potentially terminating signaling while preserving both receptors for further rounds of activation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Complejos Multiproteicos/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética
2.
PLoS Genet ; 6(5): e1000963, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20502686

RESUMEN

Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Alelos , Animales , Secuencia Conservada
3.
BMC Dev Biol ; 10: 61, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20529267

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor beta (TGFbeta superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown. RESULTS: We performed a microarray analysis and compared expression profiles of animals lacking the SMA-6 DBL-1 receptor, which decreases pathway signaling, with animals that overexpress DBL-1 ligand, which increases pathway signaling. Consistent with a role for DBL-1 in control of body size, we find positive regulation by DBL-1 of genes involved in physical structure, protein synthesis and degradation, and metabolism. However, cell cycle genes were mostly absent from our results. We also identified genes in a hedgehog-related pathway, which may comprise a secondary signaling pathway downstream of DBL-1 that controls body size. In addition, DBL-1 signaling up-regulates pro-innate immunity genes. We identified a reporter for DBL-1 signaling, which is normally repressed but is up-regulated when DBL-1 signaling is reduced. CONCLUSIONS: Our results indicate that body size in C. elegans is controlled in part by regulation of metabolic processes as well as protein synthesis and degradation. This supports the growing body of evidence that suggests cell size is linked to metabolism. Furthermore, this study discovered a possible role for hedgehog-related pathways in transmitting the BMP-like signal from the hypodermis, where the core DBL-1 pathway components are required, to other tissues in the animal. We also identified the up-regulation of genes involved in innate immunity, clarifying the role of DBL-1 in innate immunity. One of the highly regulated genes is expressed at very low levels in wild-type animals, but is strongly up-regulated in Sma/Mab mutants, making it a useful reporter for DBL-1/BMP-like signaling in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , Animales , Tamaño Corporal , Caenorhabditis elegans/inmunología , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Inmunidad Innata
4.
Curr Biol ; 17(2): 159-64, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17240342

RESUMEN

Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Glipicanos/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/genética , Glipicanos/genética , Glipicanos/metabolismo , Glicoproteínas de Membrana/genética , Neuropéptidos/metabolismo , Proteoglicanos/genética , Tejido Subcutáneo/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/metabolismo
5.
Dev Cell ; 9(5): 651-62, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16256740

RESUMEN

BMP signaling is essential for promoting self-renewal of mouse embryonic stem cells and Drosophila germline stem cells and for repressing stem cell proliferation in the mouse intestine and skin. However, it remains unknown whether BMP signaling can promote self-renewal of adult somatic stem cells. In this study, we show that BMP signaling is necessary and sufficient for promoting self-renewal and proliferation of somatic stem cells (SSCs) in the Drosophila ovary. BMP signaling is required in SSCs to directly control their maintenance and division, but is dispensable for proliferation of their differentiated progeny. Furthermore, BMP signaling is required to control SSC self-renewal, but not survival. Moreover, constitutive BMP signaling prolongs the SSC lifespan. Therefore, our study clearly demonstrates that BMP signaling directly promotes SSC self-renewal and proliferation in the Drosophila ovary. Our work further suggests that BMP signaling could promote self-renewal of adult stem cells in other systems.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Drosophila/metabolismo , Ovario/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Longevidad/fisiología , Modelos Biológicos , Ovario/citología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteína Wnt1
6.
Methods Mol Biol ; 1891: 51-73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414126

RESUMEN

C. elegans has played a central role in the elucidation of the TGFß pathway over the last two decades. This is due to the high conservation of the pathway components and the power of genetic and cell biological approaches applied toward understanding how the pathway signals. In Subheading 3, we detail approaches to study the BMP branch of the TGFß pathway in C. elegans.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Imagen Molecular , Mutagénesis , Transducción de Señal , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pruebas Genéticas , Mesodermo/metabolismo , Imagen Molecular/métodos , Mutación
7.
PLoS One ; 14(5): e0216628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071172

RESUMEN

The transforming growth factor-ß (TGFß) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFß ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFß signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFß receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFß receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFß receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFß pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Mutación Missense , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/química , Modelos Animales de Enfermedad , Humanos , Dominios Proteicos , Receptor Tipo II de Factor de Crecimiento Transformador beta/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
8.
Mol Biol Cell ; 30(26): 3151-3160, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31693440

RESUMEN

Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.


Asunto(s)
Tamaño Corporal/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glipicanos/genética , Transducción de Señal
9.
BMC Genomics ; 9: 83, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18284684

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNA molecules that target mRNAs to control gene expression by attenuating the translational efficiency and stability of transcripts. They are found in a wide variety of organisms, from plants to insects and humans. Here, we use Drosophila to investigate the possibility that circadian clocks regulate the expression of miRNAs. RESULTS: We used a microarray platform to survey the daily levels of D. melanogaster miRNAs in adult heads of wildtype flies and the arrhythmic clock mutant cyc01. We find two miRNAs (dme-miR-263a and -263b) that exhibit robust daily changes in abundance in wildtype flies that are abolished in the cyc01 mutant. dme-miR-263a and -263b reach trough levels during the daytime, peak during the night and their levels are constitutively elevated in cyc01 flies. A similar pattern of cycling is also observed in complete darkness, further supporting circadian regulation. In addition, we identified several miRNAs that appear to be constitutively expressed but nevertheless differ in overall daily levels between control and cyc01 flies. CONCLUSION: The circadian clock regulates miRNA expression in Drosophila, although this appears to be highly restricted to a small number of miRNAs. A common mechanism likely underlies daily changes in the levels of dme-miR-263a and -263b. Our results suggest that cycling miRNAs contribute to daily changes in mRNA and/or protein levels in Drosophila. Intriguingly, the mature forms of dme-miR-263a and -263b are very similar in sequence to several miRNAs recently shown to be under circadian regulation in the mouse retina, suggesting conserved functions.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster/genética , MicroARNs/genética , Animales , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Cytokine Growth Factor Rev ; 16(4-5): 387-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15869899

RESUMEN

MicroRNAs (miRNA) are non-coding small (approximately 22nt) RNAs that regulate diverse physiological and developmental processes. In animals, they regulate target genes by binding imperfectly to 3'UTR sequences in mRNAs and attenuate translation. There are hundreds of miRNA genes in animals, and current studies show they constitute a minimum of 1% of known genes. We are just beginning to understand the diverse roles they play in cellular processes, which include signaling pathways, developmental pathways, and possibly various types of cancers.


Asunto(s)
MicroARNs/genética , MicroARNs/fisiología , Transducción de Señal , Animales , Humanos , Análisis por Micromatrices , Neoplasias/metabolismo , Células Madre/fisiología
11.
Fly (Austin) ; 12(2): 105-117, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30015555

RESUMEN

Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Retroalimentación Fisiológica , MicroARNs/genética , Alas de Animales/crecimiento & desarrollo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Alas de Animales/metabolismo
12.
Aging Cell ; 5(3): 235-46, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16842496

RESUMEN

MicroRNAs (miRNAs) are small, abundant transcripts that can bind partially homologous target messages to inhibit their translation in animal cells. miRNAs have been shown to affect a broad spectrum of biological activities, including developmental fate determination, cell signaling and oncogenesis. Little is known, however, of miRNA contributions to aging. We examined the expression of 114 identified Caenorhabditis elegans miRNAs during the adult lifespan and find that 34 miRNAs exhibit changes in expression during adulthood (P

Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Longevidad/genética , MicroARNs/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Salud , Insulina/genética , Longevidad/fisiología , MicroARNs/aislamiento & purificación , Músculo Esquelético/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Factores de Tiempo
13.
Artículo en Inglés | MEDLINE | ID: mdl-28096268

RESUMEN

Transforming growth factor ß (TGF-ß) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-ß family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-ß family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-ß family in this organism as well as new conserved mechanisms of regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Envejecimiento , Animales , Tamaño Corporal , Linaje de la Célula , Ectodermo/fisiología , Humanos , Inmunidad Innata , Ligandos , Longevidad , Mesodermo/fisiología , Fosforilación , Filogenia , Multimerización de Proteína , Proteínas Smad/fisiología
14.
G3 (Bethesda) ; 7(1): 87-93, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27793971

RESUMEN

Genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated nuclease (Cas9) enables specific genetic modifications, including deletions, insertions, and substitutions in numerous organisms, such as the fruit fly Drosophila melanogaster One challenge of the CRISPR/Cas9 system can be the laborious and time-consuming screening required to find CRISPR-induced modifications due to a lack of an obvious phenotype and low frequency after editing. Here we apply the successful co-CRISPR technique in Drosophila to simultaneously target a gene of interest and a marker gene, ebony, which is a recessive gene that produces dark body color and has the further advantage of not being a commonly used transgenic marker. We found that Drosophila broods containing higher numbers of CRISPR-induced ebony mutations ("jackpot" lines) are significantly enriched for indel events in a separate gene of interest, while broods with few or no ebony offspring showed few mutations in the gene of interest. Using two different PAM sites in our gene of interest, we report that ∼61% (52-70%) of flies from the ebony-enriched broods had an indel in DNA near either PAM site. Furthermore, this marker mutation system may be useful in detecting the less frequent homology-directed repair events, all of which occurred in the ebony-enriched broods. By focusing on the broods with a significant number of ebony flies, successful identification of CRISPR-induced events is much faster and more efficient. The co-CRISPR technique we present significantly improves the screening efficiency in identification of genome-editing events in Drosophila.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Edición Génica/métodos , Animales , Animales Modificados Genéticamente , Marcación de Gen/métodos , Mutación INDEL/genética , Fenotipo
15.
PLoS One ; 12(7): e0180681, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704415

RESUMEN

Signal transduction of the conserved transforming growth factor-ß (TGFß) family signaling pathway functions through two distinct serine/threonine transmembrane receptors, the type I and type II receptors. Endocytosis orchestrates the assembly of signaling complexes by coordinating the entry of receptors with their downstream signaling mediators. Recently, we showed that the C. elegans type I bone morphogenetic protein (BMP) receptor SMA-6, part of the TGFß family, is recycled through the retromer complex while the type II receptor, DAF-4 is recycled in a retromer-independent, ARF-6 dependent manner. From genetic screens in C. elegans aimed at identifying new modifiers of BMP signaling, we reported on SMA-10, a conserved LRIG (leucine-rich and immunoglobulin-like domains) transmembrane protein. It is a positive regulator of BMP signaling that binds to the SMA-6 receptor. Here we show that the loss of sma-10 leads to aberrant endocytic trafficking of SMA-6, resulting in its accumulation in distinct intracellular endosomes including the early endosome, multivesicular bodies (MVB), and the late endosome with a reduction in signaling strength. Our studies show that trafficking defects caused by the loss of sma-10 are not universal, but affect only a limited set of receptors. Likewise, in Drosophila, we find that the fly homolog of sma-10, lambik (lbk), reduces signaling strength of the BMP pathway, consistent with its function in C. elegans and suggesting evolutionary conservation of function. Loss of sma-10 results in reduced ubiquitination of the type I receptor SMA-6, suggesting a possible mechanism for its regulation of BMP signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Caenorhabditis elegans/genética , Endocitosis , Endosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación , Transporte de Proteínas , Transducción de Señal
16.
BMC Dev Biol ; 5: 8, 2005 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15840165

RESUMEN

BACKGROUND: In C. elegans there are two well-defined TGFbeta-like signaling pathways. The Sma/Mab pathway affects body size morphogenesis, male tail development and spicule formation while the Daf pathway regulates entry into and exit out of the dauer state. To identify additional factors that modulate TGFbeta signaling in the Sma/Mab pathway, we have undertaken a genetic screen for small animals and have identified kin-29. RESULTS: kin-29 encodes a protein with a cytoplasmic serine-threonine kinase and a novel C-terminal domain. The kinase domain is a distantly related member of the EMK (ELKL motif kinase) family, which interacts with microtubules. We show that the serine-threonine kinase domain has in vitro activity. kin-29 mutations result in small animals, but do not affect male tail morphology as do several of the Sma/Mab signal transducers. Adult worms are smaller than the wild-type, but also develop more slowly. Rescue by kin-29 is achieved by expression in neurons or in the hypodermis. Interaction with the dauer pathway is observed in double mutant combinations, which have been seen with Sma/Mab pathway mutants. We show that kin-29 is epistatic to the ligand dbl-1, and lies upstream of the Sma/Mab pathway target gene, lon-1. CONCLUSION: kin-29 is a new modulator of the Sma/Mab pathway. It functions in neurons and in the hypodermis to regulate body size, but does not affect all TGFbeta outputs, such as tail morphogenesis.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Masculino , Datos de Secuencia Molecular , Morfogénesis/genética , Mutación , Neuronas/enzimología , Neuropéptidos/genética , Neuropéptidos/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Transducción de Señal/genética , Tejido Subcutáneo/enzimología , Factor de Crecimiento Transformador beta/genética
17.
BMC Mol Biol ; 6: 20, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16236171

RESUMEN

BACKGROUND: Pseudouridine (Psi) is an abundant modified nucleoside in RNA and a number of studies have shown that the presence of Psi affects RNA structure and function. The positions of Psi in spliceosomal small nuclear RNAs (snRNAs) have been determined for a number of species but not for the snRNAs from Caenorhabditis elegans (C. elegans), a popular experimental model system of development. RESULTS: As a prelude to determining the function of or requirement for this modification in snRNAs, we have mapped the positions of Psi in U1, U2, U4, U5, and U6 snRNAs from worms using a specific primer extension method. As with other species, C. elegans U2 snRNA has the greatest number of Psi residues, with nine, located in the 5' half of the U2 snRNA. U5 snRNA has three Psis, in or near the loop of the large stem-loop that dominates the structure of this RNA. U6 and U1 snRNAs each have one Psi, and two Psi residues were found in U4 snRNA. CONCLUSION: The total number of Psis found in the snRNAs of C. elegans is significantly higher than the minimal amount found in yeasts but it is lower than that seen in sequenced vertebrate snRNAs. When the actual sites of modification on C. elegans snRNAs are compared with other sequenced snRNAs most of the positions correspond to modifications found in other species. However, two of the positions modified on C. elegans snRNAs are unique, one at position 28 on U2 snRNA and one at position 62 on U4 snRNA. Both of these modifications are in regions of these snRNAs that interact with U6 snRNA either in the spliceosome or in the U4/U6 small nuclear ribonucleoprotein particle (snRNP) and the presence of Psi may be involved in strengthening the intermolecular association of the snRNAs.


Asunto(s)
Caenorhabditis elegans/genética , Seudouridina/metabolismo , ARN Nuclear Pequeño/química , Empalmosomas/genética , Animales , Secuencia de Bases , Técnicas de Amplificación de Ácido Nucleico , Seudouridina/análisis
18.
RNA Biol ; 2(3): 93-100, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17114923

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators participating in biological processes ranging from differentiation to carcinogenesis. We developed a rational probe design algorithm and a sensitive labelling scheme for optimizing miRNA microarrays. Our microarray contains probes for all validated miRNAs from five species, with the potential for drawing on species conservation to identify novel miRNAs with homologous probes. These methods are useful for high-throughput analysis of micro RNAs from various sources, and allow analysis with limiting quantities of RNA. The system design can also be extended for use on Luminex beads or on 96-well plates in an ELISA-style assay. We optimized hybridization temperatures using sequence variations on 20 of the probes and determined that all probes distinguish wild-type from 2 nt mutations, and most probes distinguish a 1 nt mutation, producing good selectivity between closely-related small RNA sequences. Results of tissue comparisons on our microarrays reveal patterns of hybridization that agree with results from Northern blots and other methods.


Asunto(s)
MicroARNs/análisis , MicroARNs/genética , Sondas Moleculares , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Células Cultivadas , Ratas , Ratas Long-Evans
19.
Trends Endocrinol Metab ; 13(7): 295-9, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12163231

RESUMEN

The transforming growth factor beta (TGF-beta) superfamily of paracrine and autocrine signaling molecules regulates a vast array of developmental and homeostatic processes and is itself exquisitely regulated. The misregulation of these molecules often results in cancer and other diseases. Here, we focus on new research that explores how TGF-beta superfamily signaling is controlled between the secreting cell and the target cell. Regulation can occur upon ligand secretion (in a latent protein complex) and in the creation of signaling gradients. Proteins in the extracellular milieu sequester ligand away from or facilitate ligand binding to receptor serine kinases. Ligands even positively regulate their own negative regulators. Studies of how TGF-beta signaling is regulated extracellularly have broadened our understanding of TGF-beta pathways, and could provide clues to our understanding and treatment of diseases resulting from misregulation of these pathways.


Asunto(s)
Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Animales , Espacio Extracelular , Folistatina , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteoglicanos/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
20.
Sci Signal ; 8(399): re10, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26486175

RESUMEN

The highly conserved wiring of the SMAD-dependent transforming growth factor ß (TGFß) superfamily signaling pathway has been mapped over the last 20 years after molecular discovery of its component parts. Numerous alternative TGFß-activated signaling pathways that elicit SMAD-independent biological responses also exist. However, the molecular mechanisms responsible for the renowned context dependency of TGFß signaling output remains an active and often confounding area of research, providing a prototype relevant to regulation of other signaling pathways. Highlighting discoveries presented at the 9th FASEB meeting, The TGFß Superfamily: Signaling in Development and Disease (July 12-17th 2015 in Snowmass, Colorado), this Review outlines research into the rich contextual nature of TGFß signaling output and offers clues for therapeutic advances.


Asunto(s)
Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Drosophila , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA