Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 298(2): 101507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929169

RESUMEN

Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.


Asunto(s)
COVID-19/metabolismo , Heparina/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Heparina/química , Heparina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Tratamiento Farmacológico de COVID-19
2.
Molecules ; 25(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349426

RESUMEN

Anemia is the main extra-gastrointestinal symptom in inflammatory bowel diseases (IBDs). Interleukin-6 (IL-6) and other cytokines are secreted and act in the microenvironment of the small intestine mucous membrane of IBD patients. Iron is essential for multiple cell functions and its homeostasis is regulated by the hepcidin-ferroportin axis. Hepcidin (HEPC) is mainly produced by the liver in response to iron needs but is also an acute phase protein. During inflammation, hepcidin is upregulated by IL-6 and is responsible for iron compartmentalization within cells, in turn causing anemia of inflammation. Tissues other than liver can produce hepcidin in response to inflammatory stimuli, in order to decrease iron efflux at a local level, then acting in an autocrine-paracrine manner. In IBDs and, in particular, in celiac disease (CeD), IL-6 might trigger the expression, upregulation and secretion of hepcidin in the small intestine, reducing iron efflux and exacerbating defective iron absorption. 7-Hydroxymatairesinol (7-HMR) belongs to the family of lignans, polyphenolic compounds produced by plants, and has nutraceutical antioxidant, anti-inflammatory and estrogenic properties. In this mini-review we revise the role of inflammation in IBDs and in particular in CeD, focusing our attention on the close link among inflammation, anemia and iron metabolism. We also briefly describe the anti-inflammatory and estrogenic activity of 7-HMR contained in foods that are often consumed by CeD patients. Finally, considering that HEPC expression is regulated by iron needs, inflammation and estrogens, we explored the hypothesis that 7-HMR consumption could ameliorate anemia in CeD using Caco-2 cells as bowel model. Further studies are needed to verify the regulation pathway through which 7-HMR may interfere with the local production of HEPC in bowel.


Asunto(s)
Anemia/metabolismo , Antiinflamatorios/farmacología , Enfermedad Celíaca/metabolismo , Hepcidinas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Hierro/metabolismo , Lignanos/farmacología , Animales , Antioxidantes/farmacología , Células CACO-2 , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Citocinas/metabolismo , Grano Comestible/química , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/dietoterapia , Enfermedades Inflamatorias del Intestino/inmunología , Lignanos/química , Lignanos/metabolismo
3.
Angiogenesis ; 22(1): 133-144, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30168023

RESUMEN

Thrombospondin (TSP)-1 and TSP-2 share similar structures and functions, including a remarkable antiangiogenic activity. We have previously demonstrated that a mechanism of the antiangiogenic activity of TSP-1 is the interaction of its type III repeats domain with fibroblast growth factor-2 (FGF2), affecting the growth factor bioavailability and angiogenic activity. Since the type III repeats domain is conserved in TSP-2, this study aimed at investigating whether also TSP-2 retained the ability to interact with FGF2. The FGF2 binding properties of TSP-1 and TSP-2 and their recombinant domains were analyzed by solid-phase binding and surface plasmon resonance assays. TSP-2 bound FGF2 with high affinity (Kd = 1.3 nM). TSP-2/FGF2 binding was inhibited by calcium and heparin. The FGF2-binding domain of TSP-2 was located in the type III repeats and the minimal interacting sequence was identified as the GVTDEKD peptide in repeat 3C, corresponding to KIPDDRD, the active sequence of TSP-1. A second putative FGF2 binding sequence was also identified in repeat 11C of both TSPs. Computational docking analysis predicted that both the TSP-2 and TSP-1-derived heptapeptides interacted with FGF2 with comparable binding properties. Accordingly, small molecules based on the TSP-1 active sequence blocked TSP-2/FGF2 interaction. Binding of TSP-2 to FGF2 impaired the growth factor ability to interact with its cellular receptors, since TSP-2-derived fragments prevented the binding of FGF2 to both heparin (used as a structural analog of heparan sulfate proteoglycans) and FGFR-1. These findings identify TSP-2 as a new FGF2 ligand that shares with TSP-1 the same molecular requirements for interaction with the growth factor and a comparable capacity to block FGF2 interaction with proangiogenic receptors. These features likely contribute to TSP-2 antiangiogenic and antineoplastic activity, providing the rationale for future therapeutic applications.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/química , Resonancia por Plasmón de Superficie , Trombospondinas/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Secuencias Repetitivas de Aminoácido , Trombospondinas/metabolismo
4.
Mol Cell Probes ; 32: 60-64, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27765650

RESUMEN

Although large expansions of the non-coding GGGGCC repeat in C9orf72 gene are clearly defined as pathogenic for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), intermediate-length expansions have also been associated with those and other neurodegenerative diseases. Intermediate-length allele sizing is complicated by intrinsic properties of current PCR-based methodologies, in that somatic mosaicism could be suspected. We designed a protocol that allows the exact sizing of intermediate-length alleles, as well as the identification of large expansions.


Asunto(s)
Alelos , Reacción en Cadena de la Polimerasa/métodos , Proteínas/genética , Proteína C9orf72 , Electroforesis en Gel de Agar , Genotipo , Humanos
5.
Comput Struct Biotechnol J ; 23: 1397-1407, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38596316

RESUMEN

Krabbe disease is a sphingolipidosis characterized by the genetic deficiency of the acid hydrolase ß-galactosylceramidase (GALC). Most of the studies concerning the biological role of GALC performed on Krabbe patients and Galc-deficient twitcher mice (an authentic animal model of the disease) indicate that the pathogenesis of this disorder is the consequence of the accumulation of the neurotoxic GALC substrate ß-galactosylsphingosine (psychosine), ignoring the possibility that this enzyme may exert a wider biological impact. Indeed, limited information is available about the effect of GALC downregulation on the cell lipidome in adult and developing organisms. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model human genetic diseases, including sphingolipidoses, and two GALC co-orthologs have been identified in zebrafish (galca and galcb). Here, we investigated the effect of the competitive and irreversible GALC inhibitor ß-galactose-cyclophellitol (GCP) on the lipid profile of zebrafish embryos. Molecular modelling indicates that GCP can be sequestered in the catalytic site of the enzyme and covalently binds human GALC, and the zebrafish Galca and Galcb proteins in a similar manner. Accordingly, GCP inhibits the ß-galactosylceramide hydrolase activity of zebrafish in vitro and in vivo, leading to significant alterations of the lipidome of zebrafish embryos. These results indicate that the lack of GALC activity deeply affects the lipidome during the early stages of embryonic development, and thereby provide insights into the pathogenesis of Krabbe disease.

6.
JACS Au ; 3(3): 628-656, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006755

RESUMEN

Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.

7.
Cancer Gene Ther ; 29(7): 908-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34426652

RESUMEN

Angiogenesis, the formation of new blood vessels from preexisting ones, is crucial for tumor growth and metastatization, and is considered a promising therapeutic target. Unfortunately, drugs directed against a specific proangiogenic growth factor or receptor turned out to be of limited benefit for oncology patients, likely due to the high biochemical redundancy of the neovascularization process. In this scenario, multitarget compounds that are able to simultaneously tackle different proangiogenic pathways are eagerly awaited. UniPR1331 is a 3ß-hydroxy-Δ5-cholenic acid derivative, which is already known to inhibit Eph-ephrin interaction. Here, we employed an analysis pipeline consisting of molecular modeling and simulation, surface plasmon resonance spectrometry, biochemical assays, and endothelial cell models to demonstrate that UniPR1331 directly interacts with the vascular endothelial growth factor receptor 2 (VEGFR2) too. The binding of UniPR1331 to VEGFR2 prevents its interaction with the natural ligand vascular endothelial growth factor and subsequent autophosphorylation, signal transduction, and in vitro proangiogenic activation of endothelial cells. In vivo, UniPR1331 inhibits tumor cell-driven angiogenesis in zebrafish. Taken together, these data shed light on the pleiotropic pharmacological effect of UniPR1331, and point to Δ5-cholenic acid as a promising molecular scaffold for the development of multitarget antiangiogenic compounds.


Asunto(s)
Efrinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Células Endoteliales/metabolismo , Efrinas/metabolismo , Efrinas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismo
8.
Biomolecules ; 11(5)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063530

RESUMEN

Glycosaminoglycans (GAGs) are linear polysaccharides. In proteoglycans (PGs), they are attached to a core protein. GAGs and PGs can be found as free molecules, associated with the extracellular matrix or expressed on the cell membrane. They play a role in the regulation of a wide array of physiological and pathological processes by binding to different proteins, thus modulating their structure and function, and their concentration and availability in the microenvironment. Unfortunately, the enormous structural diversity of GAGs/PGs has hampered the development of dedicated analytical technologies and experimental models. Similarly, computational approaches (in particular, molecular modeling, docking and dynamics simulations) have not been fully exploited in glycobiology, despite their potential to demystify the complexity of GAGs/PGs at a structural and functional level. Here, we review the state-of-the art of computational approaches to studying GAGs/PGs with the aim of pointing out the "bitter" and "sweet" aspects of this field of research. Furthermore, we attempt to bridge the gap between bioinformatics and glycobiology, which have so far been kept apart by conceptual and technical differences. For this purpose, we provide computational scientists and glycobiologists with the fundamentals of these two fields of research, with the aim of creating opportunities for their combined exploitation, and thereby contributing to a substantial improvement in scientific knowledge.


Asunto(s)
Membrana Celular/metabolismo , Biología Computacional/métodos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Animales , Glicosaminoglicanos/química , Humanos , Proteoglicanos/química , Relación Estructura-Actividad
9.
Sci Rep ; 9(1): 15912, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685905

RESUMEN

Mice emit ultrasonic vocalizations (USVs) in different social conditions: pups maternal separation, juveniles play, adults mating and social investigation. The USVs measurement has become an important instrument for behavioural phenotyping in neurodevelopmental disorders (NDDs). Recently, we have demonstrated that the deletion of the NFκB1 gene, which encodes the p50 NF-κB subunit, causes NDDs phenotype in mice. In this study, we investigated the ultrasonic communication and the effects of an early social enrichment in mice lacking the NF-κB p50 subunit (p50 KO). In particular, USVs of wild-type (WT), p50 KO and KO exposed to early social enrichment (KO enriched) were recorded using an ultrasound sensitive microphone and analysed by Avisoft software. USVs analysis showed that p50 KO pups emit more and longer vocalizations compared to WT pups. On the contrary, in adulthood, p50 KO mice emit less USVs than WT mice. We also found significant qualitative differences in p50 KO mice USVs compared to WT mice; the changes specifically involved two USVs categories. Early social enrichment had no effect on USVs number, duration and type in p50 KO mice. Together, these data revealed social communication alterations in a mouse model of NDDs; these deficits were not recovered by early social enrichment, strengthening the fact that genetic background prevails on environmental enrichment.


Asunto(s)
Trastornos del Neurodesarrollo/patología , Vocalización Animal , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Subunidad p50 de NF-kappa B/deficiencia , Subunidad p50 de NF-kappa B/genética , Trastornos del Neurodesarrollo/metabolismo , Fenotipo
10.
Sci Rep ; 9(1): 15768, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673058

RESUMEN

p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous "electropositive channel" in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/metabolismo , Antígenos VIH , VIH-1 , Sistema de Señalización de MAP Quinasas , Multimerización de Proteína , Sindecano-1 , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Línea Celular Tumoral , Antígenos VIH/química , Antígenos VIH/metabolismo , VIH-1/química , VIH-1/metabolismo , Heparina/química , Heparina/metabolismo , Humanos , Sindecano-1/química , Sindecano-1/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
11.
Future Med Chem ; 10(24): 2835-2854, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30539670

RESUMEN

Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Descubrimiento de Drogas , Terapia Molecular Dirigida , Ácido N-Acetilneuramínico/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Animales , Descubrimiento de Drogas/métodos , Gangliósidos/metabolismo , Glicoproteínas/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida/métodos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neovascularización Patológica/complicaciones , Neovascularización Patológica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA