Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578387

RESUMEN

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Asunto(s)
Síndrome del Cromosoma X Frágil , Enfermedades Mitocondriales , Humanos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Temblor/tratamiento farmacológico , Temblor/genética , Antioxidantes/uso terapéutico , Ataxia/tratamiento farmacológico , Ataxia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339019

RESUMEN

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Evasión Inmune , Vigilancia Inmunológica , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
J Transl Med ; 21(1): 344, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221624

RESUMEN

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Histonas , Enfermedad Crítica , Pronóstico , Diagnóstico Precoz , Espectrometría de Masas
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674605

RESUMEN

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Asunto(s)
Enfermedad de Lafora , MicroARNs , Ratones , Masculino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Enfermedades Neuroinflamatorias , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Estrés Oxidativo/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Cell Mol Life Sci ; 78(23): 7491-7503, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718826

RESUMEN

Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.


Asunto(s)
Antioxidantes/farmacología , Melaninas/metabolismo , Melanocitos/citología , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/complicaciones , Nutrientes/farmacología , Retinitis Pigmentosa/prevención & control , Animales , Humanos , Melanocitos/metabolismo , Mitocondrias/metabolismo , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
6.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613805

RESUMEN

Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.


Asunto(s)
Sepsis Neonatal , Sepsis , Recién Nacido , Adulto , Humanos , Glicocálix/metabolismo , Endotelio Vascular/metabolismo , Sepsis/metabolismo , Biomarcadores/metabolismo
7.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555526

RESUMEN

Chronic gut inflammation in Crohn's disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/metabolismo , Catalasa/genética , Catalasa/metabolismo , Estudios Retrospectivos , Antioxidantes/metabolismo , Genotipo , Inflamación/complicaciones , Variación Genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles
8.
Neurobiol Dis ; 148: 105162, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171227

RESUMEN

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron­sulfur clusters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mitochondrial function and biogenesis, fatty acid storage, energy metabolism, and antioxidant defence. It has been previously shown that the PPARγ/PPARγ coactivator 1 alpha (PGC-1α) pathway is dysregulated when there is frataxin deficiency, thus contributing to FRDA pathogenesis and supporting the PPARγ pathway as a potential therapeutic target. Here we assess whether MIN-102 (INN: leriglitazone), a novel brain penetrant and orally bioavailable PPARγ agonist with an improved profile for central nervous system (CNS) diseases, rescues phenotypic features in cellular and animal models of FRDA. In frataxin-deficient dorsal root ganglia (DRG) neurons, leriglitazone increased frataxin protein levels, reduced neurite degeneration and α-fodrin cleavage mediated by calpain and caspase 3, and increased survival. Leriglitazone also restored mitochondrial membrane potential and partially reversed decreased levels of mitochondrial Na+/Ca2+ exchanger (NCLX), resulting in an improvement of mitochondrial functions and calcium homeostasis. In frataxin-deficient primary neonatal cardiomyocytes, leriglitazone prevented lipid droplet accumulation without increases in frataxin levels. Furthermore, leriglitazone improved motor function deficit in YG8sR mice, a FRDA mouse model. In agreement with the role of PPARγ in mitochondrial biogenesis, leriglitazone significantly increased markers of mitochondrial biogenesis in FRDA patient cells. Overall, these results suggest that targeting the PPARγ pathway by leriglitazone may provide an efficacious therapy for FRDA increasing the mitochondrial function and biogenesis that could increase frataxin levels in compromised frataxin-deficient DRG neurons. Alternately, leriglitazone improved the energy metabolism by increasing the fatty acid ß-oxidation in frataxin-deficient cardiomyocytes without elevation of frataxin levels. This could be linked to a lack of significant mitochondrial biogenesis and cardiac hypertrophy. The results reinforced the different tissue requirement in FRDA and the pleiotropic effects of leriglitazone that could be a promising therapy for FRDA.


Asunto(s)
Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/efectos de los fármacos , Gotas Lipídicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Neuronas/efectos de los fármacos , PPAR gamma/agonistas , Tiazolidinedionas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Ataxia de Friedreich/patología , Ataxia de Friedreich/fisiopatología , Humanos , Proteínas de Unión a Hierro/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neuritas/efectos de los fármacos , Neuritas/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Frataxina
9.
Inflamm Res ; 70(2): 159-170, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33346851

RESUMEN

BACKGROUND: The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed in a well-established body of literature. METHODS: Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions. RESULTS: The retrieved literature provided evidence relating acute pathologic conditions, such as sepsis and pneumonia, with a number of redox endpoints of biological and clinical relevance. Among these findings, both ALA and CARN were effective in counteracting inflammation-associated redox biomarkers, while CoQ10 showed decreased levels in proinflammatory conditions. MN-associated antioxidant actions were applied in a number of acute disorders, mostly using one MN. The body of literature assessing the safety and the complementary roles of MNs taken together suggests an adjuvant role of MN combinations in counteracting oxidative stress in sepsis and other acute disorders, including COVID-19-associated pneumonia. CONCLUSIONS: The present state of art in the use of individual MNs in acute disorders suggests planning adjuvant therapy trials utilizing MN combinations aimed at counteracting proinflammatory conditions, as in the case of pneumonia and the COVID-19 pandemic.


Asunto(s)
Antiinflamatorios/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Carnitina/uso terapéutico , SARS-CoV-2 , Sepsis/tratamiento farmacológico , Ácido Tióctico/uso terapéutico , Ubiquinona/análogos & derivados , Enfermedad Aguda , Animales , Quimioterapia Adyuvante , Humanos , Mitocondrias/metabolismo , Ubiquinona/uso terapéutico
10.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576097

RESUMEN

Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.


Asunto(s)
Biomarcadores/metabolismo , Cromatina/metabolismo , Choque Séptico/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Citrulina/metabolismo , Estudios de Cohortes , Femenino , Proteína HMGB1/metabolismo , Histonas/metabolismo , Humanos , Inmunoensayo , Masculino , Ratones , Persona de Mediana Edad , Nucleoproteínas/sangre , Proyectos Piloto
11.
Mol Med ; 26(1): 94, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032520

RESUMEN

BACKGROUND: Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS: Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS: miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS: Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.


Asunto(s)
Biomarcadores , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/etiología , Factores de Edad , Edad de Inicio , Cultivo de Sangre , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Recién Nacido , MicroARNs/sangre , MicroARNs/genética , Sepsis Neonatal/sangre , Sepsis Neonatal/epidemiología , Vigilancia en Salud Pública , Evaluación de Síntomas
12.
Crit Care Med ; 48(12): 1841-1844, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826431

RESUMEN

Great efforts are being made worldwide to identify the specific clinical characteristics of infected critically ill patients that mediate the associated pathogenesis, including vascular dysfunction, thrombosis, dysregulated inflammation, and respiratory complications. Recently, coronavirus disease 2019 has been closely related to sepsis, which suggests that most deaths in ICUs in infected patients are produced by viral sepsis. Understanding the physiopathology of the disease that lead to sepsis after severe acute respiratory syndrome coronavirus 2 infection is a current clinical need to improve intensive care-applied therapies applied to critically ill patients. Although the whole representative data characterizing the immune and inflammatory status in coronavirus disease 2019 patients are not completely known, it is clear that hyperinflammation and coagulopathy contribute to disease severity. Here, we present some common features shared by severe coronavirus disease 2019 patients and sepsis and describe proposed anti-inflammatory therapies for coronavirus disease 2019 which have been previously evaluated in sepsis.


Asunto(s)
COVID-19/inmunología , Cuidados Críticos/métodos , Síndrome de Dificultad Respiratoria/inmunología , Sepsis/inmunología , Antiinflamatorios/uso terapéutico , Trastornos de la Coagulación Sanguínea/prevención & control , COVID-19/complicaciones , Citocinas/antagonistas & inhibidores , Glucocorticoides/uso terapéutico , Humanos , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2 , Sepsis/etiología , Sepsis/terapia , Trombosis
13.
Adv Exp Med Biol ; 1229: 273-285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32285418

RESUMEN

Coronary artery disease (CAD) is the leading death cause worldwide. Non-coding RNA (ncRNA) are key regulators of genetic expression and thus can affect directly or indirectly the development and progression of different diseases. ncRNA can be classified in several types depending on the length or structure, as long non-coding RNA (lncRNA), microRNA (miRNA) and circularRNA (circRNA), among others. These types of RNA are present within cells or in circulation, and for this reason they have been used as biomarkers of different diseases, therefore revolutionizing precision medicine. Recent research studied the capability of circulating ncRNA to inform about CAD presence and predict the outcome of the disease. In this chapter we present a list of the miRNA, lncRNA and circRNA which are potential biomarkers of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , ARN no Traducido , Biomarcadores , Humanos , MicroARNs , ARN Circular , ARN Largo no Codificante
14.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992778

RESUMEN

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.


Asunto(s)
Envejecimiento , Antioxidantes , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Carnitina/farmacología , Carnitina/uso terapéutico , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
15.
J Cell Mol Med ; 21(8): 1584-1592, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28244682

RESUMEN

Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 µg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 µg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 µmol/l) and tempol (100 µmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Epoprostenol/agonistas , Histonas/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tromboxano A2/antagonistas & inhibidores , Celecoxib/farmacología , Óxidos N-Cíclicos/farmacología , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Epoprostenol/biosíntesis , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Marcadores de Spin , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo , Tromboxano A2/biosíntesis , Tromboxano-A Sintasa/genética , Tromboxano-A Sintasa/metabolismo
16.
Crit Rev Clin Lab Sci ; 54(7-8): 529-550, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29226748

RESUMEN

Epigenetic modifications and regulators represent potential molecular elements which control relevant physiological and pathological features, thereby contributing to the natural history of human disease. These epigenetic modulators can be employed as disease biomarkers, since they show several advantages and provide information about gene function, thus explaining differences among patient endophenotypes. In addition, epigenetic biomarkers can incorporate information regarding the effects of the environment and lifestyle on health and disease, and monitor the effect of applied therapies. Technologies used to analyze these epigenetic biomarkers are constantly improving, becoming much easier to use. Laboratory professionals can easily acquire experience and techniques are becoming more affordable. A high number of epigenetic biomarker candidates are being continuously proposed, making now the moment to adopt epigenetics in the clinical laboratory and convert epigenetic marks into reliable biomarkers. In this review, we describe some current promising epigenetic biomarkers and technologies being applied in clinical practice. Furthermore, we will discuss some laboratory strategies and kits to accelerate the adoption of epigenetic biomarkers into clinical routine. The likelihood is that over time, better markers will be identified and will likely be incorporated into future multi-target assays that might help to optimize its application in a clinical laboratory. This will improve cost-effectiveness, and consequently encourage the development of theragnosis and the application of precision medicine.


Asunto(s)
Epigénesis Genética , Marcadores Genéticos , Genómica , Metilación de ADN , Humanos , Técnicas de Diagnóstico Molecular
17.
Hum Mol Genet ; 24(1): 21-36, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25122658

RESUMEN

One of the genes involved in Charcot-Marie-Tooth (CMT) disease, an inherited peripheral neuropathy, is GDAP1. In this work, we show that there is a true ortholog of this gene in Drosophila, which we have named Gdap1. By up- and down-regulation of Gdap1 in a tissue-specific manner, we show that altering its levels of expression produces changes in mitochondrial size, morphology and distribution, and neuronal and muscular degeneration. Interestingly, muscular degeneration is tissue-autonomous and not dependent on innervation. Metabolic analyses of our experimental genotypes suggest that alterations in oxidative stress are not a primary cause of the neuromuscular degeneration but a long-term consequence of the underlying mitochondrial dysfunction. Our results contribute to a better understanding of the role of mitochondria in CMT disease and pave the way to generate clinically relevant disease models to study the relationship between mitochondrial dynamics and peripheral neurodegeneration.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mitocondrias/fisiología , Enfermedades Neuromusculares/etiología , Animales , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Tamaño Mitocondrial , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neuromusculares/patología , Filogenia , Retina/metabolismo
18.
J Gen Virol ; 98(7): 1855-1863, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28691896

RESUMEN

The level of antioxidants, such as thiol-containing tripeptide glutathione (GSH), in cytomegalovirus (CMV)-infected cells is notably increased. We previously showed that GSH levels in plasma, as measured by untargeted 1H nuclear magnetic resonance, are higher in allogeneic stem cell transplant (allo-SCT) recipients who subsequently develop CMV viraemia. We hypothesized that the net level of oxidative-stress markers present in plasma may be reduced in patients who develop CMV DNAaemia compared to those who do not. We serially monitored the levels of malondialdehyde (MDA) and carbonylated proteins (CPs) early after allo-SCT and assessed whether they could predict the occurrence of CMV DNAaemia. MDA levels were measured in 43 patients (28 had CMV DNAaemia) and CPs were quantified in 53 patients (38 patients developed CMV DNAaemia). The area under the curve (AUC) value for MDA, but not for CPs, was significantly lower in patients who subsequently developed CMV DNAaemia compared to those who remained DNAaemia-free (P=0.043). A trend toward lower MDA AUC values was observed in episodes of CMV DNAaemia with faster CMV replicative kinetics and in those who reached higher peak CMV DNA levels. Moreover, receiver operating characteristic curve analyses indicated that the MDA biomarker had the predictive ability to discriminate between patients with or without subsequent CMV DNAaemia (AUC=0.69, 95 % confidence interval 0.51-0.85, P=0.05). In summary, serial quantitation of MDA may be useful for individualizing antiviral prophylaxis therapies (targeted prophylaxis) in the upcoming era of new antiviral drugs with improved safety profiles.


Asunto(s)
Citomegalovirus/genética , ADN Viral/sangre , Glutatión/sangre , Malondialdehído/sangre , Carbonilación Proteica/fisiología , Trasplante de Células Madre/efectos adversos , Carga Viral/métodos , Viremia/diagnóstico , Adulto , Anciano , Antioxidantes/metabolismo , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/virología , Femenino , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/virología , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Curva ROC , Viremia/virología
19.
Biochim Biophys Acta ; 1842(1): 116-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184606

RESUMEN

Down Syndrome is the most common chromosomal disease and is also known for its decreased incidence of solid tumors and its progeroid phenotype. Cellular and systemic oxidative stress has been considered as one of the Down Syndrome phenotype causes. We correlated, in a preliminary study, the fibroblast proliferation rate and different cell proliferation key regulators, like Rcan1 and the telomere length from Down Syndrome fetuses, with their oxidative stress profile and the Ribonucleic acid and protein expression of the main antioxidant enzymes together with their activity. Increased oxidized glutathione/glutathione ratio and high peroxide production were found in our cell model. These results correlated with a distorted antioxidant shield. The messenger RNA (SOD1) and protein levels of copper/zinc superoxide dismutase were increased together with a decreased mRNA expression and protein levels of glutathione peroxidase (GPx). As a consequence the [Cu/ZnSOD/(catalase+GPx)] activity ratio increases which explains the oxidative stress generated in the cell model. In addition, the expression of thioredoxin 1 and glutaredoxin 1 is decreased. The results obtained show a decreased antioxidant phenotype that correlates with increased levels of Regulator of calcineurin 1 and attrition of telomeres, both related to oxidative stress and cell cycle impairment. Our preliminary results may explain the proneness to a progeroid phenotype.


Asunto(s)
Síndrome de Down/metabolismo , Fibroblastos/metabolismo , Estrés Oxidativo/genética , Piel/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Síndrome de Down/genética , Síndrome de Down/patología , Femenino , Feto , Fibroblastos/patología , Regulación de la Expresión Génica , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Cultivo Primario de Células , Transducción de Señal , Piel/patología , Superóxido Dismutasa , Superóxido Dismutasa-1 , Telómero/genética , Telómero/metabolismo , Telómero/patología , Homeostasis del Telómero , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA