Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172566

RESUMEN

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Complejos Multiproteicos , Humanos , Endosomas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Complejos Multiproteicos/metabolismo
2.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37272231

RESUMEN

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Ciclooxigenasa 2/análisis , Ciclooxigenasa 2/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(13): e2115566119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333655

RESUMEN

SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de la Membrana , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación
4.
Clin Genet ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779778

RESUMEN

Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.

5.
Mol Microbiol ; 117(5): 1245-1262, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35403274

RESUMEN

Infection with Plasmodium falciparum parasites results in approximately 627,000 deaths from malaria annually. Key to the parasite's success is their ability to invade and subsequently grow within human erythrocytes. Parasite proteins involved in parasite invasion and proliferation are therefore intrinsically of great interest, as targeting these proteins could provide novel means of therapeutic intervention. One such protein is P113 which has been reported to be both an invasion protein and an intracellular protein located within the parasitophorous vacuole (PV). The PV is delimited by a membrane (PVM) across which a plethora of parasite-specific proteins are exported via the Plasmodium Translocon of Exported proteins (PTEX) into the erythrocyte to enact various immune evasion functions. To better understand the role of P113 we isolated its binding partners from in vitro cultures of P. falciparum. We detected interactions with the protein export machinery (PTEX and exported protein-interacting complex) and a variety of proteins that either transit through the PV or reside on the parasite plasma membrane. Genetic knockdown or partial deletion of P113 did not significantly reduce parasite growth or protein export but did disrupt the morphology of the PVM, suggesting that P113 may play a role in maintaining normal PVM architecture.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Parásitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Transporte de Proteínas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
6.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34313317

RESUMEN

The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Animales , Células HEK293 , Células HeLa , Humanos , Microscopía , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas
7.
Mol Cell Proteomics ; 20: 100005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33177156

RESUMEN

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Mitocondrias/metabolismo , Mitocondrias/microbiología , Células HEK293 , Células HeLa , Humanos , Proteoma , Proteómica , Fiebre Q , Células THP-1
8.
Traffic ; 19(8): 605-623, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29696751

RESUMEN

Plasmodium falciparum, which causes malaria, extensively remodels its human host cells, particularly erythrocytes. Remodelling is essential for parasite survival by helping to avoid host immunity and assisting in the uptake of plasma nutrients to fuel rapid growth. Host cell renovation is carried out by hundreds of parasite effector proteins that are exported into the erythrocyte across an enveloping parasitophorous vacuole membrane (PVM). The Plasmodium translocon for exported (PTEX) proteins is thought to span the PVM and provide a channel that unfolds and extrudes proteins across the PVM into the erythrocyte. We show that exported reporter proteins containing mouse dihydrofolate reductase domains that inducibly resist unfolding become trapped at the parasite surface partly colocalizing with PTEX. When cargo is trapped, loop-like extensions appear at the PVM containing both trapped cargo and PTEX protein EXP2, but not additional components HSP101 and PTEX150. Following removal of the block-inducing compound, export of reporter proteins only partly recovers possibly because much of the trapped cargo is spatially segregated in the loop regions away from PTEX. This suggests that parasites have the means to isolate unfoldable cargo proteins from PTEX-containing export zones to avert disruption of protein export that would reduce parasite growth.


Asunto(s)
Malaria Falciparum/parasitología , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Animales , Eritrocitos/parasitología , Humanos , Malaria Falciparum/sangre , Ratones , Vacuolas/parasitología
9.
Toxicol Appl Pharmacol ; 409: 115307, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33147493

RESUMEN

Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.


Asunto(s)
Arsénico/toxicidad , Hígado/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Antioxidantes/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra
10.
J Cell Sci ; 129(11): 2170-81, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076521

RESUMEN

Cytosolic dynamin-related protein 1 (Drp1, also known as DNM1L) is required for both mitochondrial and peroxisomal fission. Drp1-dependent division of these organelles is facilitated by a number of adaptor proteins at mitochondrial and peroxisomal surfaces. To investigate the interplay of these adaptor proteins, we used gene-editing technology to create a suite of cell lines lacking the adaptors MiD49 (also known as MIEF2), MiD51 (also known as MIEF1), Mff and Fis1. Increased mitochondrial connectivity was observed following loss of individual adaptors, and this was further enhanced following the combined loss of MiD51 and Mff. Moreover, loss of adaptors also conferred increased resistance of cells to intrinsic apoptotic stimuli, with MiD49 and MiD51 showing the more prominent role. Using a proximity-based biotin labeling approach, we found close associations between MiD51, Mff and Drp1, but not Fis1. Furthermore, we found that MiD51 can suppress Mff-dependent enhancement of Drp1 GTPase activity. Our data indicates that Mff and MiD51 regulate Drp1 in specific ways to promote mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Muerte Celular , Línea Celular , Edición Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxisomas/metabolismo , Coloración y Etiquetado
11.
Biochem Soc Trans ; 46(5): 1225-1238, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30287509

RESUMEN

Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Osteocondrodisplasias/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteoma/metabolismo
12.
Microb Cell Fact ; 17(1): 17, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402276

RESUMEN

BACKGROUND: Chimeric virus-like particles (VLP) allow the display of foreign antigens on their surface and have proved valuable in the development of safe subunit vaccines or drug delivery. However, finding an inexpensive production system and a VLP scaffold that allows stable incorporation of diverse, large foreign antigens are major challenges in this field. RESULTS: In this study, a versatile and cost-effective platform for chimeric VLP development was established. The membrane integral small surface protein (dS) of the duck hepatitis B virus was chosen as VLP scaffold and the industrially applied and safe yeast Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) as the heterologous expression host. Eight different, large molecular weight antigens of up to 412 amino acids derived from four animal-infecting viruses were genetically fused to the dS and recombinant production strains were isolated. In all cases, the fusion protein was well expressed and upon co-production with dS, chimeric VLP containing both proteins could be generated. Purification was accomplished by a downstream process adapted from the production of a recombinant hepatitis B VLP vaccine. Chimeric VLP were up to 95% pure on protein level and contained up to 33% fusion protein. Immunological data supported surface exposure of the foreign antigens on the native VLP. Approximately 40 mg of chimeric VLP per 100 g dry cell weight could be isolated. This is highly comparable to values reported for the optimized production of human hepatitis B VLP. Purified chimeric VLP were shown to be essentially stable for 6 months at 4 °C. CONCLUSIONS: The dS-based VLP scaffold tolerates the incorporation of a variety of large molecular weight foreign protein sequences. It is applicable for the display of highly immunogenic antigens originating from a variety of pathogens. The yeast-based production system allows cost-effective production that is not limited to small-scale fundamental research. Thus, the dS-based VLP platform is highly efficient for antigen presentation and should be considered in the development of future vaccines.


Asunto(s)
Presentación de Antígeno , Pichia/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Animales , Patos , Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B del Pato/inmunología , Humanos , Pichia/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Vacunas Sintéticas/economía , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/análisis , Vacunas de Partículas Similares a Virus/genética
13.
J Biol Chem ; 288(38): 27584-27593, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23921378

RESUMEN

Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Animales , Dinaminas/genética , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Peroxisomas/genética , Peroxisomas/metabolismo
14.
Biochim Biophys Acta ; 1833(1): 150-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22580041

RESUMEN

Mitochondria exist as a highly dynamic tubular network, and their morphology is governed by the delicate balance between frequent fusion and fission events, as well as by interactions with the cytoskeleton. Alterations in mitochondrial morphology are associated with changes in metabolism, cell development and cell death, whilst several human pathologies have been associated with perturbations in the cellular machinery that coordinate these processes. Mitochondrial fission also contributes to ensuring the proper distribution of mitochondria in response to the energetic requirements of the cell. The master mediator of fission is Dynamin related protein 1 (Drp1), which polymerises and constricts mitochondria to facilitate organelle division. The activity of Drp1 at the mitochondrial outer membrane is regulated through post-translational modifications and interactions with mitochondrial receptor and accessory proteins. This review will concentrate on recent advances made in delineating the mechanism of mitochondrial fission, and will highlight the importance of mitochondrial fission in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.


Asunto(s)
Biología Celular/tendencias , Dinámicas Mitocondriales/fisiología , Animales , Comprensión , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Plantas/ultraestructura , Levaduras/fisiología , Levaduras/ultraestructura
15.
Semin Hear ; 45(2): 172-204, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855347

RESUMEN

The test box can be used for fitting hearing aids (verifying audibility for the individual), for setting and fine-tuning specific signal processing (e.g., directional microphones, noise reduction, frequency lowering, telecoil responses), and for setting the response for specific accessories (e.g., remote microphones). If you have selected these features for your patient, it is important to make sure they are working properly and turned on. In addition, these tests can help you address specific patient complaints. Let us start by using the test box to pre-set a hearing aid and then we will move on to speech tests of signal processing and features.

16.
Semin Hear ; 45(2): 205-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855348

RESUMEN

Probe microphone measurements are an essential step in an individualized hearing aid fitting. These measurements allow audiologists to account for the individual's hearing and ear canal acoustics when programming hearing aids. An evidence-based hearing aid fitting includes matching the measured output of the hearing aids to targets for each input level and frequency. This allows the audiologist to confidently counsel the patient that the acoustic fitting is accurate, and the next step is for the individual to use the amplification during all waking hours to adapt to the newly amplified sounds. This also avoids mistakes such as overamplification or insufficient gain, which can endanger the patient and/or lead to a compromised fitting.

17.
Semin Hear ; 45(2): 153-171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855342

RESUMEN

This chapter will take you through specific patient complaints and the test box measures you can use to address these complaints. These measurements give you data that aid in your decision making about what is wrong, if anything, with the hearing aid and how you might address the problem. Before we discuss specific patient complaints and problems, let us review the American National Standard Institute (ANSI) guidelines for hearing aid testing in a test box.

18.
Semin Hear ; 45(2): 216-234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855345

RESUMEN

The real-ear probe microphone system provides a powerful tool to individual hearing aid fittings accounting for your patient's hearing and ear canal characteristics. The primary treatment for hearing loss is audibility, returning an audible signal across frequencies and input levels given the constraints of the hearing loss. This chapter will provide detailed information on the measures needed to individualize the hearing aid fitting and will present various clinical scenarios that will allow you to work with this information and see how you apply this knowledge clinically. You will explore the verification of signal processing and features that allow you to support your patients.

19.
Semin Hear ; 45(2): 235-252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855343

RESUMEN

If there is sound in the ear canal, you can measure it with a probe microphone in the ear. The following are a few examples of how you might use your real-ear probe microphone measures beyond verifying hearing aid fittings, signal processing, and function of features. A process to simulate hearing loss to educate and support family members and patients is described.

20.
Semin Hear ; 45(2): 145-152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855344

RESUMEN

In this chapter you will be introduced to the hearing aid test box equipment and work through how to prepare the equipment so that it is ready to provide the testing you will use to evaluate, fit, and troubleshoot hearing aids and other amplifiers. At the end of this chapter, you will be familiar with terminology associated with hearing aid test box measures and the leveling required with the reference microphone and coupler microphone to ensure that your measurements are accurate and can be interpreted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA