Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 146(5): 772-84, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21871655

RESUMEN

T cell differentiation into distinct functional effector and inhibitory subsets is regulated, in part, by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between regulatory T cell (T(reg)) and T(H)17 differentiation. HIF-1 enhances T(H)17 development through direct transcriptional activation of RORγt and via tertiary complex formation with RORγt and p300 recruitment to the IL-17 promoter, thereby regulating T(H)17 signature genes. Concurrently, HIF-1 attenuates T(reg) development by binding Foxp3 and targeting it for proteasomal degradation. Importantly, this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α-deficient T cells are resistant to induction of T(H)17-dependent experimental autoimmune encephalitis associated with diminished T(H)17 and increased T(reg) cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos T Reguladores/citología , Células Th17/citología , Animales , Secuencia de Bases , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Células Jurkat , Ratones , Datos de Secuencia Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Alineación de Secuencia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Factores de Transcripción p300-CBP/metabolismo
2.
Immunity ; 45(1): 83-93, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438767

RESUMEN

Regulatory T (Treg) cells are important in maintaining self-tolerance and immune homeostasis. The Treg cell transcription factor Foxp3 works in concert with other co-regulatory molecules, including Eos, to determine the transcriptional signature and characteristic suppressive phenotype of Treg cells. Here, we report that the inflammatory cytokine interleukin-6 (IL-6) actively repressed Eos expression through microRNA-17 (miR-17). miR-17 expression increased in Treg cells in the presence of IL-6, and its expression negatively correlated with that of Eos. Treg cell suppressive activity was diminished upon overexpression of miR-17 in vitro and in vivo, which was mitigated upon co-expression of an Eos mutant lacking miR-17 target sites. Also, RNAi of miR-17 resulted in enhanced suppressive activity. Ectopic expression of miR-17 imparted effector-T-cell-like characteristics to Treg cells via the de-repression of genes encoding effector cytokines. Thus, miR-17 provides a potent layer of Treg cell control through targeting Eos and additional Foxp3 co-regulators.


Asunto(s)
Proteínas Portadoras/metabolismo , Colitis/inmunología , Interleucina-6/metabolismo , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Autotolerancia
3.
BMC Biol ; 22(1): 133, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853238

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignancy with a pressing need for improved therapeutic response and prognosis prediction. This study delves into a novel predictive model related to ferroptosis, a regulated cell death mechanism disrupting metabolic processes. RESULTS: Single-cell sequencing data analysis identified subpopulations of HCC cells exhibiting activated ferroptosis and distinct gene expression patterns compared to normal tissues. Utilizing the LASSO-Cox algorithm, we constructed a model with 10 single-cell biomarkers associated with ferroptosis, namely STMN1, S100A10, FABP5, CAPG, RGCC, ENO1, ANXA5, UTRN, CXCR3, and ITM2A. Comprehensive analyses using these biomarkers revealed variations in immune infiltration, tumor mutation burden, drug sensitivity, and biological functional profiles between risk groups. Specific associations were established between particular immune cell subtypes and certain gene expression patterns. Treatment response analyses indicated potential benefits from anti-tumor immune therapy for the low-risk group and chemotherapy advantages for the high-risk group. CONCLUSIONS: The integration of this single-cell level model with clinicopathological features enabled accurate overall survival prediction and effective risk stratification in HCC patients. Our findings illuminate the potential of ferroptosis-related genes in tailoring therapy and prognosis prediction for HCC, offering novel insights into the intricate interplay among ferroptosis, immune response, and HCC progression.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Análisis de la Célula Individual , Medicina de Precisión/métodos
4.
Eur J Immunol ; 53(12): e2250182, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37615189

RESUMEN

Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.


Asunto(s)
Melanoma Experimental , Linfocitos T Reguladores , Ratones , Animales , Linfocitos T CD8-positivos , Subgrupos de Linfocitos T , Melanoma Experimental/terapia , Inmunidad
5.
Biochem Biophys Res Commun ; 690: 149247, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000292

RESUMEN

Hepatocellular carcinoma (HCC) is a highly malignant tumor with a global prevalence. In addition to the existing clinical guidelines, the effectiveness of anlotinib and Aurora-A inhibitors in treating HCC has also been demonstrated. However, Anlotinib, as an anti-angiogenesis therapy, has shown significant benefits in clinical trials but is limited by its single-agent treatment and the development of drug resistance. Aurora-A inhibitors are currently being tested in clinical trials but have limited efficacy. Combination therapy may offer clear advantages over monotherapy in this context. METHODS: In this study, we used HCC cell lines to investigate whether the combination of the two drugs could enhance their individual strengths and mitigate their weaknesses, thereby providing greater clinical benefits both in vitro and in vivo. RESULTS: Our findings confirmed that the Aurora-A inhibitor alisertib and anlotinib exhibited a time-dose-dependent inhibitory effect on HCC cells. In vitro cytological experiments demonstrated that the combination of the two drugs synergistically inhibited cell proliferation, invasion, and metastasis, while promoting cell apoptosis. Furthermore, we identified the underlying molecular mechanism by which the combination of the Aurora-A inhibitor alisertib and anlotinib inhibited HCC through the inhibition of the NF-ĸB signaling pathway. CONCLUSIONS: In summary, we have demonstrated the effectiveness of combining anlotinib with an Aurora-A inhibitor, which expands the potential applications of anlotinib in the clinical treatment of HCC in the future.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Indoles/farmacología , Indoles/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Apoptosis , Proliferación Celular , Línea Celular Tumoral
6.
J Viral Hepat ; 31(3): 143-150, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38235846

RESUMEN

Previous studies did not provide substantial evidence for long-term immune persistence after the hepatitis B vaccine (HepB) in preterm birth (PTB) children. Consequently, there is ongoing controversy surrounding the booster immunization strategy for these children. Therefore, we conducted a retrospective cohort study to evaluate the disparities in immune persistence between PTB children and full-term children. A total of 1027 participants were enrolled in this study, including 505 PTB children in the exposure group and 522 full-term children in the control group. The negative rate of hepatitis B surface antibody (HBsAb) in the PTB group was significantly lower than that in the control group (47.9% vs. 41.4%, p = .035). The risk of HBsAb-negative in the exposure group was 1.5 times higher than that in the control group (adjusted odds ratio [aOR] = 1.5, 95% confidence interval [CI]: 1.1-2.0). The geometric mean concentration (GMC) of HBsAb was much lower for participants in the exposure group compared to participants in the control group (9.3 vs. 12.4 mIU/mL, p = .029). Subgroup analysis showed that the very preterm infants (gestational age <32 weeks) and the preterm low birth weight infants (birth weight <2000 g) had relatively low GMC levels of 3.2 mIU/mL (95% CI: 0.9-11.1) and 7.9 mIU/mL (95% CI: 4.2-14.8), respectively. Our findings demonstrated that PTB had a significant impact on the long-term persistence of HBsAb after HepB vaccination. The very preterm infants (gestational age <32 weeks) and the preterm low birth weight infants (birth weight <2000 g) may be special populations that should be given priority for HepB booster vaccination.


Asunto(s)
Hepatitis B , Fenilbutiratos , Nacimiento Prematuro , Niño , Femenino , Humanos , Lactante , Recién Nacido , Peso al Nacer , Estudios de Seguimiento , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Vacunas contra Hepatitis B , Recien Nacido Prematuro , Nacimiento Prematuro/epidemiología , Estudios Retrospectivos , Vacunación
7.
Environ Sci Technol ; 58(10): 4824-4836, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408018

RESUMEN

Electrochemically converting nitrate, a widely distributed nitrogen contaminant, into harmless N2 is a feasible and environmentally friendly route to close the anthropogenic nitrogen-based cycle. However, it is currently hindered by sluggish kinetics and low N2 selectivity, as well as scarce attention to reactor configuration. Here, we report a flow-through zero-gap electrochemical reactor that shows a high performance of nitrate reduction with 100% conversion and 80.36% selectivity of desired N2 in the chlorine-free system at 100 mg-N·L-1 NO3- while maintaining a rapid reduction kinetics of 0.07676 min-1. More importantly, the mass transport and current utilization efficiency are significantly improved by shortening the inter-electrode distance, especially in the zero-gap electrocatalytic system where the current efficiency reached 50.15% at 5 mA·cm-2. Detailed characterizations demonstrated that during the electroreduction process, partial Cu(OH)2 on the cathode surface was reconstructed into stable Cu/Cu2O as the active phase for efficient nitrate reduction. In situ characterizations revealed that the highly selective *NO to *N conversion and the N-N coupling step played crucial roles during the selective reduction of NO3- to N2 in the zero-gap electrochemical system. In addition, theoretical calculations demonstrated that improving the key intermediate *N coverage could effectively facilitate the N-N coupling step, thereby promoting N2 selectivity. Moreover, the environmental and economic benefits and long-term stability shown by the treatment of real nitrate-containing wastewater make our proposed electrocatalytic system more attractive for practical applications.


Asunto(s)
Nitratos , Aguas Residuales , Nitratos/química , Electrodos , Nitrógeno/análisis , Nitrógeno/química , Cinética
8.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30886050

RESUMEN

Regulatory T cells (Tregs) are crucial mediators of immune control. The characteristic gene expression and suppressive functions of Tregs depend considerably on the stable expression and activity of the transcription factor FOXP3. Transcriptional regulation of the Foxp3 gene has been studied in depth, but both the expression and function of this factor are also modulated at the protein level. However, the molecular players involved in posttranslational FOXP3 regulation are just beginning to be elucidated. Here, we found that TRAF6-deficient Tregs were dysfunctional in vivo; mice with Treg-restricted deletion of TRAF6 were resistant to implanted tumors and displayed enhanced anti-tumor immunity. We further determined that FOXP3 undergoes K63-linked ubiquitination at lysine 262 mediated by the E3 ligase TRAF6. In the absence of TRAF6 activity or upon mutation of the ubiquitination site, FOXP3 displayed aberrant, perinuclear accumulation and disrupted regulatory function. Thus, K63-linked ubiquitination by TRAF6 ensures proper localization of FOXP3 and facilitates the transcription factor's gene-regulating activity in Tregs. These results implicate TRAF6 as a key posttranslational, Treg-stabilizing regulator that may be targeted in novel tolerance-breaking therapies.


Asunto(s)
Colitis/inmunología , Factores de Transcripción Forkhead/fisiología , Lisina/metabolismo , Melanoma Experimental/inmunología , Linfocitos T Reguladores/inmunología , Factor 6 Asociado a Receptor de TNF/fisiología , Ubiquitinación , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología
9.
Mol Med ; 29(1): 88, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403020

RESUMEN

BACKGROUND: Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS: The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS: Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1ß, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1ß, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION: IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.


Asunto(s)
Amnios , Nacimiento Prematuro , Animales , Femenino , Humanos , Recién Nacido , Ratones , Embarazo , Amnios/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33 , FN-kappa B/metabolismo , Parto/metabolismo , Nacimiento Prematuro/metabolismo
10.
Oncologist ; 28(8): e645-e652, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37285035

RESUMEN

BACKGROUND: This study aimed to explore the relationship between irradiation of lymphocyte-related organs at risk (LOARs) and lymphopenia during definitive concurrent chemoradiotherapy (dCCRT) for esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS: Cases of ESCC patients who received dCCRT from 2 prospective clinical trials were identified. To find its correlation with survival outcomes, grades of absolute lymphocyte counts (ALCs) nadir during radiotherapy were recorded following COX analysis. Associations of lymphocytes at nadir and dosimetric parameters including relative volumes of spleen and bone marrow receiving 0.5, 1, 2, 3, 5, 10, 20, 30, and 50Gy (V0.5, V1, V2, V3, V5, V10, V20, V30, and V50), and effective dose to circulating immune cells (EDIC) were examined by logistic risk regression analysis. The cutoffs of dosimetric parameters were determined by the receiver operating characteristic curve (ROC). RESULTS: A total of 556 patients were included. The incidences of grades 0, 1, 2, 3, and 4 (G4) lymphopenia during dCCRT were 0.2%, 0.5%, 9.7%, 59.7%, and 29.8%, respectively. Their median overall survival (OS) and progression-free survival (PFS) time were 50.2 and 24.3 months, respectively; the incidence of local recurrence and distant metastasis were 36.6% and 31.8%, respectively. Patients once suffering from G4 nadir during radiotherapy had unfavorable OS (HR, 1.28; P = .044) and a higher incidence of distant metastasis (HR, 1.52; P = .013). Furthermore, patients with EDIC ≤8.3Gy plus spleen V0.5 ≤11.1% and bone marrow V10 ≤33.2% were strongly associated with lower risk of G4 nadir (OR, 0.41; P = .004), better OS (HR, 0.71; P = .011) and lower risk of distant metastasis (HR, 0.56; P = .002). CONCLUSIONS: Smaller relative volumes of spleen V0.5 and bone marrow V10 plus lower EDIC were jointly prone to reduce the incidence of G4 nadir during definitive concurrent chemoradiotherapy. This modified therapeutic strategy could be a significant prognostic factor for survival outcomes in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Linfopenia , Humanos , Neoplasias Esofágicas/complicaciones , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/patología , Estudios Prospectivos , Linfopenia/etiología , Linfopenia/patología , Quimioradioterapia/efectos adversos , Linfocitos/patología , Estudios Retrospectivos
12.
Inflamm Res ; 72(4): 797-812, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879064

RESUMEN

OBJECTIVES: Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. METHODS: The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). RESULTS: SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. CONCLUSIONS: SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.


Asunto(s)
Amnios , Parto , Embarazo , Femenino , Humanos , Amnios/metabolismo , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Parto/genética , Parto/metabolismo , Membranas Extraembrionarias/metabolismo , Quimiocinas/metabolismo , Inflamación/metabolismo , Proteína Amiloide A Sérica
13.
BMC Pulm Med ; 23(1): 171, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37198573

RESUMEN

Polycystin-2 (PC2), which is a transmembrane protein encoded by the PKD2 gene, plays an important role in kidney disease, but its role in lipopolysaccharide (LPS)-induced acute lung injury (ALI) is unclear. We overexpressed PKD2 in lung epithelial cells in vitro and in vivo and examined the role of PKD2 in the inflammatory response induced by LPS in vitro and in vivo. Overexpression of PKD2 significantly decreased production of the inflammatory factors TNF-α, IL-1ß, and IL-6 in LPS-treated lung epithelial cells. Moreover, pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, reversed the inhibitory effect of PKD2 overexpression on the secretion of inflammatory factors in LPS-treated lung epithelial cells. We further demonstrated that overexpression of PKD2 could inhibit LPS-induced downregulation of the LC3BII protein levels and upregulation of SQSTM1/P62 protein levels in lung epithelial cells. Moreover, we found that LPS-induced changes in the lung wet/dry (W/D) weight ratio and levels of the inflammatory cytokines TNF-α, IL-6 and IL-1ß in the lung tissue were significantly decreased in mice whose alveolar epithelial cells overexpressed PKD2. However, the protective effects of PKD2 overexpression against LPS-induced ALI were reversed by 3-MA pretreatment. Our study suggests that overexpression of PKD2 in the epithelium may alleviate LPS-induced ALI by activating autophagy.


Asunto(s)
Lesión Pulmonar Aguda , Autofagia , Lipopolisacáridos , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
14.
Mediators Inflamm ; 2023: 7992140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152370

RESUMEN

Liver hepatocellular carcinoma (LIHC) is a highly lethal malignant tumor originating from the digestive system, which is a serious threat to human health. In recent years, immunotherapy has shown significant therapeutic effects in the treatment of LIHC, but only for a minority of patients. The basement membrane (BM) plays an important role in the occurrence and development of tumors, including LIHC. Therefore, this study is aimed at establishing a risk score model based on basement membrane-related genes (BMRGs) to predict patient prognosis and response to immunotherapy. First, we defined three patterns of BMRG modification (C1, C2, and C3) by consensus clustering of BMRG sets and LIHC transcriptome data obtained from public databases. Survival analysis showed that patients in the C2 group had a better prognosis, and Gene Set Variation Analysis (GSVA) revealed that the statistically significant pathways were mainly enriched in the C2 group. Moreover, we performed Weighted Correlation Network Analysis (WGCNA) on the above three subgroups and obtained 179 intersecting genes. We further applied function enrichment analyses, and the results demonstrated that they were mainly enriched in metabolism-related pathways. Furthermore, we conducted the LASSO regression analysis and obtained 4 BMRGs (MPV17, GNB1, DHX34, and MAFG) that were significantly related to the prognosis of LIHC patients. We further constructed a prognostic risk score model based on the above genes, which was verified to have good predictive performance for LIHC prognosis. In addition, we analyzed the correlation between the risk score and the tumor immune microenvironment (TIM), and the results showed that the high-risk scoring group tended to be in an immunosuppressed status. Finally, we investigated the relationship between the risk score and LIHC immune function. The results demonstrated that the risk score was closely related to the expression levels of multiple immune checkpoints. Patients in the low-risk group had significantly higher IPS scores, and patients in the high-risk group had lower immune escape and TIDE score. In conclusion, we established a novel risk model based on BMRGs, which may serve as a biomarker for prognosis and immunotherapy in LIHC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas/genética , Membrana Basal , Pronóstico , Microambiente Tumoral , ARN Helicasas
15.
Proc Natl Acad Sci U S A ; 117(22): 12269-12280, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409602

RESUMEN

In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.


Asunto(s)
5'-Nucleotidasa/metabolismo , Activinas/farmacología , Antígenos CD/metabolismo , Apirasa/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/prevención & control , Esclerosis Múltiple/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Proteínas Ligadas a GPI/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Células Th17/metabolismo
16.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836929

RESUMEN

Birds play a vital role in the study of ecosystems and biodiversity. Accurate bird identification helps monitor biodiversity, understand the functions of ecosystems, and develop effective conservation strategies. However, previous bird sound recognition methods often relied on single features and overlooked the spatial information associated with these features, leading to low accuracy. Recognizing this gap, the present study proposed a bird sound recognition method that employs multiple convolutional neural-based networks and a transformer encoder to provide a reliable solution for identifying and classifying birds based on their unique sounds. We manually extracted various acoustic features as model inputs, and feature fusion was applied to obtain the final set of feature vectors. Feature fusion combines the deep features extracted by various networks, resulting in a more comprehensive feature set, thereby improving recognition accuracy. The multiple integrated acoustic features, such as mel frequency cepstral coefficients (MFCC), chroma features (Chroma) and Tonnetz features, were encoded by a transformer encoder. The transformer encoder effectively extracted the positional relationships between bird sound features, resulting in enhanced recognition accuracy. The experimental results demonstrated the exceptional performance of our method with an accuracy of 97.99%, a recall of 96.14%, an F1 score of 96.88% and a precision of 97.97% on the Birdsdata dataset. Furthermore, our method achieved an accuracy of 93.18%, a recall of 92.43%, an F1 score of 93.14% and a precision of 93.25% on the Cornell Bird Challenge 2020 (CBC) dataset.


Asunto(s)
Ecosistema , Reconocimiento en Psicología , Animales , Sonido , Acústica , Aves
17.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446059

RESUMEN

Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.


Asunto(s)
Amnios , Hidrocortisona , Embarazo , Femenino , Humanos , Hidrocortisona/metabolismo , Amnios/metabolismo , Glucocorticoides/metabolismo , Dinoprostona/metabolismo , Parto , Membranas Extraembrionarias/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo
18.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570760

RESUMEN

The interaction between macromolecular chains and phospholipid membranes in aqueous solution was investigated using dissipative particle dynamics simulations. Two cases were considered, one in which the macromolecular chains were pulled along parallel to the membrane surfaces and another in which they were pulled vertical to the membrane surfaces. Several parameters, including the radius of gyration, shape factor, particle number, and order parameter, were used to investigate the interaction mechanisms during the dynamics processes by adjusting the pulling force strength of the chains. In both cases, the results showed that the macromolecular chains undergo conformational transitions from a coiled to a rod-like structure. Furthermore, the simulations revealed that the membranes can be damaged and repaired during the dynamic processes. The role of the pulling forces and the adsorption interactions between the chains and membranes differed in the parallel and perpendicular pulling cases. These findings contribute to our understanding of the interaction mechanisms between macromolecules and membranes, and they may have potential applications in biology and medicine.


Asunto(s)
Fenómenos Mecánicos , Fosfolípidos , Sustancias Macromoleculares , Membranas , Conformación Molecular
19.
BMC Med ; 20(1): 189, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610640

RESUMEN

BACKGROUND: Enhancer of zeste homolog 2 (EZH2)-mediated histone 3 lysine 27 trimethylation (H3K27me3) is a transcription silencing mark, which is indispensable for cell lineage specification at the early blastocyst stage. This epigenetic repression is maintained in placental cytotrophoblasts but is lifted when cytotrophoblasts differentiate into syncytiotrophoblasts. However, the physiological impact of this lift remains elusive. Here, we investigated whether lifting EZH2-mediated H3K27me3 during syncytialization upregulates the expression of a short secretory isoform of a disintegrin and metalloprotease 12 (ADAM12-S), a well-recognized placenta-derived protease that cleaves insulin-like growth factor binding protein 3 to increase insulin-like growth factor (IGF) bioavailability for the stimulation of fetoplacental growth. The transcription factor and the upstream signal involved were also explored. METHODS: Human placenta tissue and cultured primary human placental cytotrophoblasts were utilized to investigate the role of EZH2-mediated H3K27me3 in ADAM12-S expression and the associated transcription factor and upstream signal during syncytialization. A mouse model was used to examine whether inhibition of EZH2-mediated H3K27me3 regulates placental ADAM12-S expression and fetoplacental growth. RESULTS: EZH2 and ADAM12 are distributed primarily in villous cytotrophoblasts and syncytiotrophoblasts, respectively. Increased ADAM12-S expression, decreased EZH2 expression, and decreased EZH2/H3K27me3 enrichment at the ADAM12 promoter were observed during syncytialization. Knock-down of EZH2 further increased ADAM12-S expression in trophoblasts. Syncytialization was also accompanied by increased STAT5B expression and phosphorylation as well as its enrichment at the ADAM12 promoter. Knock-down of STAT5B attenuated ADAM12-S expression during syncytialization. Epidermal growth factor (EGF) was capable of inducing ADAM12-S expression via stimulation of STAT5B expression and phosphorylation during syncytialization. Mouse studies revealed that administration of an EZH2 inhibitor significantly increased ADAM12-S levels in maternal blood and fetoplacental weights along with decreased H3K27me3 abundance and increased ADAM12-S expression in the placenta. CONCLUSIONS: Lifting EZH2-mediated H3K27me3 increases ADAM12-S expression during syncytialization with the participation of EGF-activated STAT5B, which may lead to elevation of ADAM12-S level in maternal blood resulting in increased IGF bioavailability for the stimulation of fetoplacental growth in pregnancy. Our studies suggest that the role of EZH2-mediated H3K27me3 may switch from cell lineage specification at the early blastocyst stage to regulation of fetoplacental growth in later gestation.


Asunto(s)
Proteína ADAM12 , Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Placenta , Proteína ADAM12/biosíntesis , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Desarrollo Fetal , Histonas/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo , Transducción de Señal
20.
Immunity ; 38(5): 998-1012, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23684987

RESUMEN

At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells without loss of the transcription factor Foxp3. We show that reprogramming is controlled by downregulation of the transcription factor Eos (Ikzf4), an obligate corepressor for Foxp3. Reprogramming was restricted to a specific subset of "Eos-labile" Treg cells that was present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Downregulation of Eos required the proinflammatory cytokine interleukin-6 (IL-6), and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3(+) lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor de Transcripción Ikaros/metabolismo , Interleucina-6/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular/inmunología , Proteínas de Unión al ADN , Regulación hacia Abajo , Factores de Transcripción Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-6/genética , Activación de Linfocitos/inmunología , Ratones , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Timo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA