Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Genet ; 19(10): e1010964, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856455

RESUMEN

Horizontal transfer (HT) refers to the exchange of genetic material between divergent species by mechanisms other than reproduction. In recent years, several studies have demonstrated HTs in eukaryotes, particularly in the context of parasitic relationships and in model species. However, very little is known about HT in natural ecosystems, especially those involving non-parasitic wild species, and the nature of the ecological relationships that promote these HTs. In this work, we conducted a pilot study investigating HTs by sequencing the genomes of 17 wild non-model species from a natural ecosystem, the Massane forest, located in southern France. To this end, we developed a new computational pipeline called INTERCHANGE that is able to characterize HTs at the whole genome level without prior annotation and directly in the raw sequencing reads. Using this pipeline, we identified 12 HT events, half of which occurred between lianas and trees. We found that mainly low copy number LTR-retrotransposons from the Copia superfamily were transferred between these wild plant species, especially those of the Ivana and Ale lineages. This study revealed a possible new route for HTs between non-parasitic plants and provides new insights into the genomic characteristics of horizontally transferred DNA in plant genomes.


Asunto(s)
Ecosistema , Genoma de Planta , Proyectos Piloto , Genoma de Planta/genética , Genómica , Retroelementos , Filogenia , Evolución Molecular , Transferencia de Gen Horizontal/genética
2.
Plant J ; 110(6): 1811-1828, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35426957

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) are mobilized via an RNA intermediate using a 'copy and paste' mechanism, and account for the majority of repetitive DNA in plant genomes. As a side effect of mobilization, the formation of LTR-RT-derived extrachromosomal circular DNAs (eccDNAs) occurs. Thus, high-throughput sequencing of eccDNA can be used to identify active LTR-RTs in plant genomes. Despite the release of a reference genome assembly, carrot LTR-RTs have not yet been thoroughly characterized. LTR-RTs are abundant and diverse in the carrot genome. We identified 5976 carrot LTR-RTs, 2053 and 1660 of which were attributed to Copia and Gypsy superfamilies, respectively. They were further classified into lineages, families and subfamilies. More diverse LTR-RT lineages, i.e. lineages comprising many low-copy-number subfamilies, were more frequently associated with genic regions. Certain LTR-RT lineages have been recently active in Daucus carota. In particular, low-copy-number LTR-RT subfamilies, e.g. those belonging to the DcAle lineage, have significantly contributed to carrot genome diversity as a result of continuing activity. We utilized eccDNA sequencing to identify and characterize two DcAle subfamilies, Alex1 and Alex3, active in carrot callus. We documented 14 and 32 de novo insertions of Alex1 and Alex3, respectively, which were positioned in non-repetitive regions.


Asunto(s)
Daucus carota , Retroelementos , Daucus carota/genética , Evolución Molecular , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Retroelementos/genética , Secuencias Repetidas Terminales/genética
3.
Plant J ; 107(1): 118-135, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866641

RESUMEN

Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.


Asunto(s)
Elementos Transponibles de ADN/genética , Secuencias Invertidas Repetidas/genética , Oryza/genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Oryza/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple
4.
J Theor Biol ; 518: 110641, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33640450

RESUMEN

Transposable elements (TEs) are essential components of the eukaryotic genomes. While mostly deleterious, evidence is mounting that TEs provide the host with beneficial adaptations. How 'selfish' or 'parasitic' DNA persists until it helps species evolution is emerging as a major evolutionary puzzle, especially in asexual taxa where the lack of sex strongly impede the spread of TEs. Since occasional but unchecked TE proliferations would ultimately drive host lineages toward extinction, asexual genomes are typically predicted to be free of TEs, which contrasts with their persistence in asexual taxa. We designed innovative 'Eco-genomic' models that account for both host demography and within-host molecular mechanisms of transposition and silencing to analyze their impact on TE dynamics in asexual genome populations. We unraveled that the spread of TEs can be limited to a stable level by density-dependent purifying selection when TE copies are over-dispersed among lineages and the host demographic turn-over is fast. We also showed that TE silencing can protect host populations in two ways; by preventing TEs with weak effects to accumulate or by favoring the elimination of TEs with large effects. Our predictions may explain TE persistence in known asexual taxa that typically show fast demography and where TE copy number variation between lineages is expected. Such TE persistence in asexual taxa potentially has important implications for their evolvability and the preservation of sexual reproduction.


Asunto(s)
Variaciones en el Número de Copia de ADN , Evolución Molecular , Elementos Transponibles de ADN/genética , Eucariontes , Genómica
5.
BMC Genomics ; 21(1): 807, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213366

RESUMEN

BACKGROUND: Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. RESULTS: We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy-like retrotransposons, three families Gypsy1, Gypsy2, and Gypsy3, contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1, Gypsy2, Gypsy3, and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina. Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana, which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1, while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. CONCLUSION: Orchid-rt1 and Gypsy1-3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.


Asunto(s)
Orchidaceae , Retroelementos , Variaciones en el Número de Copia de ADN , Evolución Molecular , Genoma de Planta , Humanos , Orchidaceae/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética
6.
New Phytol ; 226(1): 44-49, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797393

RESUMEN

Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop.


Asunto(s)
Elementos Transponibles de ADN , Oryza , Elementos Transponibles de ADN/genética , Evolución Molecular , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Genómica , Oryza/genética
7.
PLoS Genet ; 13(2): e1006630, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28212378

RESUMEN

Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.


Asunto(s)
ADN Circular/genética , Secuencias Repetitivas Esparcidas/genética , Plantas/genética , Retroelementos/genética , Arabidopsis/genética , ADN Circular/química , ADN de Plantas/química , ADN de Plantas/genética , Endospermo/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Mutagénesis Insercional , Oryza/genética , Filogenia , Hojas de la Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22801500

RESUMEN

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Musa/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Genotipo , Haploidia , Datos de Secuencia Molecular , Musa/clasificación , Filogenia
9.
BMC Genomics ; 18(1): 537, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28715998

RESUMEN

BACKGROUND: Transposables elements (TEs) contribute to both structural and functional dynamics of most eukaryotic genomes. Because of their propensity to densely populate plant and animal genomes, the precise estimation of the impact of transposition on genomic diversity has been considered as one of the main challenges of today's genomics. The recent development of NGS (next generation sequencing) technologies has open new perspectives in population genomics by providing new methods for high throughput detection of Transposable Elements-associated Structural Variants (TEASV). However, these have relied on Illumina platform that generates short reads (up to 350 nucleotides). This limitation in size of sequence reads can cause high false discovery rate (FDR) and therefore limit the power of detection of TEASVs, especially in the case of large, complex genomes. The newest sequencing technologies, such as Oxford Nanopore Technologies (ONT) can generate kilobases-long reads thus representing a promising tool for TEASV detection in plant and animals. RESULTS: We present the results of a pilot experiment for TEASV detection on the model plant species Arabidopsis thaliana using ONT sequencing and show that it can be used efficiently to detect TE movements. We generated a ~0.8X genome coverage of a met1-derived epigenetic recombinant inbred line (epiRIL) using a MinIon device with R7 chemistry. We were able to detect nine new copies of the LTR-retrotransposon Evadé (EVD). We also evidenced the activity of the DNA transposon CACTA, CAC1. CONCLUSIONS: Even at a low sequence coverage (0.8X), ONT sequencing allowed us to reliably detect several TE insertions in Arabidopsis thaliana genome. The long read length allowed a precise and un-ambiguous mapping of the structural variations caused by the activity of TEs. This suggests that the trade-off between read length and genome coverage for TEASV detection may be in favor of the former. Should the technology be further improved both in terms of lower error rate and operation costs, it could be efficiently used in diversity studies at population level.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Retroelementos/genética , Secuencias Repetidas Terminales/genética
10.
Genome Res ; 24(5): 831-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24518071

RESUMEN

Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal , Genoma de Planta , Magnoliopsida/genética , Retroelementos/genética , Especificidad de la Especie
11.
Nucleic Acids Res ; 43(13): e84, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-25813049

RESUMEN

Transposable elements (TEs) are mobile genomic DNA sequences found in most organisms. They so densely populate the genomes of many eukaryotic species that they are often the major constituents. With the rapid generation of many plant genome sequencing projects over the past few decades, there is an urgent need for improved TE annotation as a prerequisite for genome-wide studies. Analogous to the use of RNA-seq for gene annotation, we propose a new method for de novo TE annotation that uses as a guide 24 nt-siRNAs that are a part of TE silencing pathways. We use this new approach, called TASR (for Transposon Annotation using Small RNAs), for de novo annotation of TEs in Arabidopsis, rice and soybean and demonstrate that this strategy can be successfully applied for de novo TE annotation in plants.Executable PERL is available for download from: http://tasr-pipeline.sourceforge.net/.


Asunto(s)
Mapeo Cromosómico/métodos , Secuencias Repetitivas Esparcidas , Anotación de Secuencia Molecular/métodos , ARN Interferente Pequeño/genética , Arabidopsis/genética , Genoma de Planta , Oryza/genética , Glycine max/genética
12.
Proc Natl Acad Sci U S A ; 110(13): 5247-52, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23503846

RESUMEN

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Asunto(s)
Chondrus/genética , Evolución Molecular , Genes de Plantas , Secuencia de Bases , MicroARNs/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta/genética
13.
BMC Genomics ; 16: 538, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194356

RESUMEN

BACKGROUND: Comparative evolutionary analysis of whole genomes requires not only accurate annotation of gene space, but also proper annotation of the repetitive fraction which is often the largest component of most if not all genomes larger than 50 kb in size. RESULTS: Here we present the Rice TE database (RiTE-db)--a genus-wide collection of transposable elements and repeated sequences across 11 diploid species of the genus Oryza and the closely-related out-group Leersia perrieri. The database consists of more than 170,000 entries divided into three main types: (i) a classified and curated set of publicly-available repeated sequences, (ii) a set of consensus assemblies of highly-repetitive sequences obtained from genome sequencing surveys of 12 species; and (iii) a set of full-length TEs, identified and extracted from 12 whole genome assemblies. CONCLUSIONS: This is the first report of a repeat dataset that spans the majority of repeat variability within an entire genus, and one that includes complete elements as well as unassembled repeats. The database allows sequence browsing, downloading, and similarity searches. Because of the strategy adopted, the RiTE-db opens a new path to unprecedented direct comparative studies that span the entire nuclear repeat content of 15 million years of Oryza diversity.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Genoma de Planta , Oryza/genética , Elementos Transponibles de ADN/genética , Genómica , Programas Informáticos
14.
Nat Rev Genet ; 8(12): 973-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17984973

RESUMEN

Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Eucariotas/fisiología , Terminología como Asunto , Animales
15.
Plant J ; 66(2): 241-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21219509

RESUMEN

Transposable elements (TEs) are mobile entities that densely populate most eukaryotic genomes and contribute to both their structural and functional dynamics. However, most TE-related sequences in both plant and animal genomes correspond to inactive, degenerated elements, due to the combined effect of silencing pathways and elimination through deletions. One of the major difficulties in fully characterizing the molecular basis of genetic diversity of a given species lies in establishing its genome-wide transpositional activity. Here, we provide an extensive survey of the transpositional landscape of a plant genome using a deep sequencing strategy. This was achieved through paired-end mapping of a fourfold coverage of the genome of rice mutant line derived from an in vitro callus culture using Illumina technology. Our study shows that at least 13 TE families are active in this genotype, causing 34 new insertions. This next-generation sequencing-based strategy provides new opportunities to quantify the impact of TEs on the genome dynamics of the species.


Asunto(s)
Elementos Transponibles de ADN , Genoma de Planta , Mutagénesis Insercional , Oryza/genética , Mapeo Cromosómico , Cromosomas de las Plantas , ADN de Plantas/genética , Variación Genética , Análisis de Secuencia de ADN
16.
Genome ; 55(12): 883-900, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231606

RESUMEN

Iron is involved in many metabolic processes, such as respiration and photosynthesis, and therefore an essential element for plant development. Comparative analysis of gene copies between crops and lower plant groups can shed light on the evolution of genes important to iron homeostasis. A phylogenetic analysis of five metal homeostasis gene families (NAS, NRAMP, YSL, FRO, and IRT) selected in monocots, dicots, gymnosperms, and bryophytes was performed. The homologous genes were found using known iron homeostasis gene sequences of Oryza sativa, Arabidopsis thaliana, and Physcomitrella patens as queries. The phylogeny was constructed using bioinfomatics tools. A total of 243 gene sequences for 30 plant species were found. The evolutionary fingerprint analysis suggested a purifying selective pressure of iron homeostasis genes for most of the plant gene homologues. The NAS and YSL genes appear to accumulate more negative selection sites, suggesting a strong selective pressure on these two gene families. The divergence time analysis indicates IRT as the most ancient gene family and FRO as the most recent. NRAMP and YSL genes appear to share a close relationship in the evolution of iron homeostasis gene families.


Asunto(s)
Embryophyta/genética , Genes de Plantas , Hierro/metabolismo , Familia de Multigenes , Filogenia , Selección Genética , Dermatoglifia del ADN , Homeostasis/genética
17.
Life (Basel) ; 11(8)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34440601

RESUMEN

In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.

18.
Plant J ; 58(5): 754-65, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19187041

RESUMEN

Transposable elements are ubiquitous components of plant genomes. When active, these mobile elements can induce changes in the genome at both the structural and functional levels. Availability of the complete genome sequence for several model plant species provides the opportunity to study TEs in plants at an unprecedented scale. In the case of rice, annotation of the genomic sequence of the variety Nipponbare has revealed that TE-related sequences form more than 25% of its genome. However, most of the elements found are inactive, either because of structural alterations or because they are the target of various silencing pathways. In this paper, we propose a new post-genomic strategy aimed at identifying active TEs. Our approach relies on transcript profiling of TE-related sequences using a tiling microarray. We applied it to a particular class of TEs, the LTR retrotransposons. A transcript profiling assay of rice calli led to identification of a new transpositionally active family, named Lullaby. We provide a complete structural description of this element. We also show that it has recently been active in planta in rice, and discuss its phylogenetic relationships with Tos17, the only other active LTR retrotransposon described so far in the species.


Asunto(s)
Genoma de Planta , Oryza/genética , Retroelementos , Secuencias Repetidas Terminales , ADN de Plantas/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Análisis de Secuencia de ADN
19.
Philos Trans R Soc Lond B Biol Sci ; 375(1795): 20190338, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32075556

RESUMEN

In plants, RNA-directed DNA methylation (RdDM) is a silencing mechanism relying on the production of 24-nt small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) to trigger methylation and inactivation of transposable elements (TEs). We present the construction and characterization of osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower accumulation of OsNRPD1 transcripts, associated with an overall reduction of 24-nt siRNAs and DNA methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known active TEs, the LTR retrotransposons Tos17 and Lullaby and the long interspersed nuclear element-type retrotransposon Karma. However, we did not observe any clear developmental phenotype, contrary to what was expected for a mutant severely affected in RdDM. In addition, despite the presence of many putatively functional TEs in the rice genome, we found no evidence of in planta global reactivation of transposition. This knock-down of OsNRPD1 likely led to a weakly affected line, with no effect on development and a limited effect on transposition. We discuss the possibility that a knock-out mutation of OsNRPD1 would cause sterility in rice. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Oryza/genética , Proteínas de Plantas/genética , Interferencia de ARN , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Técnicas de Silenciamiento del Gen , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
20.
Plant J ; 53(6): 950-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18088314

RESUMEN

Horizontal gene transfer, defined as the transmission of genetic material between reproductively isolated species, has been considered for a long time to be a rare phenomenon. Most well-documented cases of horizontal gene transfer have been described in prokaryotes or in animals and they often involve transposable elements. The most abundant class of transposable elements in plant genomes are the long terminal repeat (LTR) retrotransposons. Because of their propensity to increase their copy number while active, LTR retrotransposons can have a significant impact on genomics changes during evolution. In a previous study, we showed that in the wild rice species Oryza australiensis, 60% of the genome is composed of only three families of LTR retrotransposons named RIRE1, Wallabi and Kangourou. In the present study, using both in silico and experimental approaches, we show that one of these three families, RIRE1, has been transferred horizontally between O. australiensis and seven other reproductively isolated Oryza species. This constitutes a new case of horizontal transfer in plants.


Asunto(s)
Transferencia de Gen Horizontal/genética , Oryza/genética , Proteínas de Plantas/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA