Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Imaging ; 2023: 5864391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636591

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18
2.
Bioconjug Chem ; 33(5): 892-906, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35420782

RESUMEN

Aberrant insulin signaling has been considered one of the risk factors for the development of Alzheimer's disease (AD) and has drawn considerable attention from the research community to further study its role in AD pathophysiology. Herein, we describe the development of an insulin-based novel positron emission tomography (PET) probe, [68Ga]Ga-NOTA-insulin, to noninvasively study the role of insulin in AD. The developed PET probe [68Ga]Ga-NOTA-insulin showed a significantly higher uptake (0.396 ± 0.055 SUV) in the AD mouse brain compared to the normal (0.140 ± 0.027 SUV) mouse brain at 5 min post injection and also showed a similar trend at 10, 15, and 20 min post injection. In addition, [68Ga]Ga-NOTA-insulin was found to have a differential uptake in various brain regions at 30 min post injection. Among the brain regions, the cortex, thalamus, brain stem, and cerebellum showed a significantly higher standard uptake value (SUV) of [68Ga]Ga-NOTA-insulin in AD mice as compared to normal mice. The inhibition of the insulin receptor (IR) with an insulin receptor antagonist peptide (S961) in normal mice showed a similar brain uptake profile of [68Ga]Ga-NOTA-insulin as it was observed in the AD case, suggesting nonfunctional IR in AD and the presence of an alternative insulin uptake route in the absence of a functional IR. The Gjedde-Patlak graphical analysis was also performed to predict the input rate of [68Ga]Ga-NOTA-insulin into the brain using MicroPET imaging data and supported the in vivo results. The [68Ga]Ga-NOTA-insulin PET probe was successfully synthesized and evaluated in a mouse model of AD in comparison with [18F]AV1451 and [11C]PIB to noninvasively study the role of insulin in AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Radioisótopos de Galio , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Compuestos Heterocíclicos con 1 Anillo , Insulina , Ratones , Tomografía de Emisión de Positrones/métodos , Receptor de Insulina
3.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574624

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Asunto(s)
Endorribonucleasas/fisiología , Vesículas Extracelulares/patología , Hepatocitos/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
4.
Inorg Chem ; 59(17): 12025-12038, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820888

RESUMEN

Four tris-bidentate catecholamide (CAM) ligands were synthesized, characterized, and evaluated as ligands for radiolabeling of gallium-68 for positron emission tomography (PET). Three of those ligands, 2,2-Glu-CAM, 3,3-Glu-CAM, and TREN-bisGlyGlu-CAM, incorporate ligand caps that contain a pendant carboxylic group for further conjugation to targeting moieties. The acyclic ligands all exhibited high (>80%) radiolabeling yields after short reaction times (<10 min) at room temperature, a distinct advantage over macrocyclic analogues that display slower kinetics. The stabilities of the four GaIII complexes are comparable to or higher than those of other acyclic ligands used for gallium-68 PET imaging, such as desferrioxamine, with pGa values ranging from 21 to >24, although the functionalizable ligands are less stable than the parent GaIII-TREN-CAM. In vivo imaging studies and ex vivo pharmacokinetic and biodistribution studies indicate that the parent [68Ga]Ga-TREN-CAM is stable in vivo but is rapidly cleared in <15 min, probably via a renal pathway. The rapid and mild radiolabeling conditions, high radiolabeling yields, and high stability in human serum (>95%) render TREN-bisGlyGlu-CAM a promising candidate for gallium-68 chelation.


Asunto(s)
Catecoles/química , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones/métodos , Animales , Estabilidad de Medicamentos , Humanos , Marcaje Isotópico , Cinética , Ligandos , Ratones , Temperatura
5.
Am J Physiol Renal Physiol ; 316(2): F263-F273, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520657

RESUMEN

Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Proteínas de Drosophila/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos de Malpighi/metabolismo , Zinc/metabolismo , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Perros , Proteínas de Drosophila/genética , Humanos , Especificidad de la Especie , Xenopus laevis
6.
Am J Physiol Endocrinol Metab ; 316(2): E251-E259, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30512988

RESUMEN

The ability of heart and skeletal muscle (SM) to switch between fat and carbohydrate oxidation is of high interest in the study of metabolic diseases and exercise physiology. Positron emission tomography (PET) imaging with the glucose analog 2-[18F]fluoro-2-deoxy-glucose (18F-FDG) provides a noninvasive means to quantitate glucose metabolic rates. However, evaluation of fatty acid oxidation (FAO) rates by PET has been limited by the lack of a suitable FAO probe. We have developed a metabolically trapped oleate analog, ( Z)-18-[18F]fluoro-4-thia-octadec-9-enoate (18F-FTO), and investigated the feasibility of using 18F-FTO and 18F-FDG to measure FAO and glucose uptake, respectively, in heart and SM of rats in vivo. To enhance the metabolic rates in SM, the vastus lateralis (VL) muscle was electrically stimulated in fasted rats for 30 min before and 30 min following radiotracer injection. The responses of radiotracer uptake patterns to pharmacological inhibition of FAO were assessed by pretreatment of the rats with the carnitine palmitoyl-transferase-1 (CPT-1) inhibitor sodium 2-[5-(4-chlorophenyl)-pentyl]oxirane-2-carboxylate (POCA). Small-animal PET images and biodistribution data with 18F-FTO and 18F-FDG demonstrated profound metabolic switching for energy provision in the myocardium from exogenous fatty acids to glucose in control and CPT-1-inhibited rats, respectively. Uptake of both radiotracers was low in unstimulated SM. In stimulated VL muscle, 18F-FTO and 18F-FDG uptakes were increased 4.4- and 28-fold, respectively, and CPT-1 inhibition only affected 18F-FTO uptake (66% decrease). 18F-FTO is a FAO-dependent PET probe that may allow assessment of energy substrate metabolic switching in conjunction with 18F-FDG and other metabolic probes.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Corazón/diagnóstico por imagen , Miocardio/metabolismo , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Compuestos Epoxi/farmacología , Fluorodesoxiglucosa F18 , Ácido Láctico/metabolismo , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Ácidos Oléicos , Oxidación-Reducción , Tomografía Computarizada por Tomografía de Emisión de Positrones , Músculo Cuádriceps/efectos de los fármacos , Radiofármacos , Ratas , Sulfuros , Distribución Tisular , Triglicéridos/metabolismo
7.
Brain ; 141(1): 271-287, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228201

RESUMEN

See Herholz (doi:10.1093/brain/awx340) for a scientific commentary on this article.Autopsy data have proposed that a topographical pattern of tauopathy occurs in the brain with the development of dementia due to Alzheimer's disease. We evaluated the findings of tau-PET to better understand neurofibrillary tangle development as it is seen in cognitively unimpaired and impaired individuals. The evolution of Alzheimer's disease tauopathy in cognitively unimpaired individuals needs to be examined to better understand disease pathogenesis. Tau-PET was performed in 86 cognitively impaired individuals who all had abnormal amyloid levels and 601 cognitively unimpaired individuals. Tau-PET findings were assessed for relationships with clinical diagnosis, age, and regional uptake patterns relative to Braak stage. Regional and voxel-wise analyses were performed. Topographical findings from tau-PET were characterized using hierarchical clustering and clinical characteristic-based subcategorization. In older cognitively unimpaired individuals (≥50 years), widespread, age-related elevated tau signal was seen among those with normal or abnormal amyloid status as compared to younger cognitively unimpaired individuals (30-49 years). More frequent regional tau signal elevation throughout the brain was seen in cognitively unimpaired individuals with abnormal versus normal amyloid. Elevated tau signal was seen in regions that are considered high Braak Stage in cognitively unimpaired and cognitively impaired individuals. Hierarchical clustering and clinical characteristic-based categorizations both showed different patterns of tau signal between groups such as greater tau signal in frontal regions in younger onset Alzheimer's disease dementia participants (most of whom had a dysexecutive clinical presentation). Tau-PET signal increases modestly with age throughout the brain in cognitively unimpaired individuals and elevated tau is seen more often when amyloid brain accumulation is present. Tau signal patterns in cognitively unimpaired correspond to early Braak stage but also suggest tangle involvement in extra-medial temporal and extra-temporal regions that are considered more advanced in the Braak scheme even when amyloid negative. Our findings also suggest the possibility of widespread development of early tangle pathology rather than a pattern defined exclusively by adjacent, region-to-region spread, prior to onset of clinical symptoms. Distinct patterns of neurofibrillary tangle deposition in younger-onset Alzheimer's disease dementia versus older-onset Alzheimer's disease dementia provide evidence for variability in regional tangle deposition patterns and demonstrate that different disease phenotypes have different patterns of tauopathy. Pathological correlation with imaging is needed to assess the implications of these observations.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/diagnóstico por imagen , Análisis por Conglomerados , Trastornos del Conocimiento/patología , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Escalas de Valoración Psiquiátrica , Estudios Retrospectivos
8.
Chem Soc Rev ; 45(24): 6855-6887, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27785498

RESUMEN

Enzymes, being remarkable catalysts, are capable of accepting a wide range of complex molecules as substrates and catalyze a variety of reactions with a high degree of chemo-, stereo- and regioselectivity in most of the reactions. Biocatalysis can be used in both simple and complex chemical transformations without the need for tedious protection and deprotection chemistry that is very common in traditional organic synthesis. This current review highlights the applicability of one class of biocatalysts viz."lipases" in synthetic transformations, the resolution of pharmaceutically important small molecules including polyphenols, amides, nucleosides and their precursors, the development of macromolecular systems (and their applications as drug/gene carriers), flame retardants, polymeric antioxidants and nanocrystalline solar cells, etc.


Asunto(s)
Biocatálisis , Lipasa/química , Sustancias Macromoleculares/síntesis química , Amidas/síntesis química , Antioxidantes/síntesis química , Portadores de Fármacos/síntesis química , Retardadores de Llama/síntesis química , Humanos , Nanoestructuras/química , Nucleósidos/síntesis química , Polifenoles/síntesis química , Energía Solar
9.
Mol Imaging ; 152016.
Artículo en Inglés | MEDLINE | ID: mdl-27941122

RESUMEN

Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. Dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (∼330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-ß plaque burden (11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-ß pathology, warranting further imaging studies of zinc homeostasis in patients with AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Citratos/administración & dosificación , Tomografía de Emisión de Positrones/métodos , Radiofármacos/administración & dosificación , Radioisótopos de Zinc/química , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Citratos/química , Citratos/farmacocinética , Femenino , Fluorodesoxiglucosa F18 , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Orina/química
10.
Radiology ; 279(2): 513-22, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26583911

RESUMEN

PURPOSE: To determine if adventitial transplantation of human adipose tissue-derived mesenchymal stem cells (MSCs) to the outflow vein of B6.Cg-Foxn1(nu)/J mice with arteriovenous fistula (AVF) at the time of creation would reduce monocyte chemoattractant protein-1 (Mcp-1) gene expression and venous neointimal hyperplasia. The second aim was to track transplanted zirconium 89 ((89)Zr)-labeled MSCs serially with positron emission tomography (PET) for 21 days. MATERIALS AND METHODS: All animal experiments were performed according to protocols approved by the institutional animal care and use committee. Fifty B6.Cg-Foxn1(nu)/J mice were used to accomplish the study aims. Green fluorescent protein was used to stably label 2.5 × 10(5) MSCs, which were injected into the adventitia of the outflow vein at the time of AVF creation in the MSC group. Eleven mice died after AVF placement. Animals were sacrificed on day 7 after AVF placement for real-time polymerase chain reaction (n = 6 for MSC and control groups) and histomorphometric (n = 6 for MSC and control groups) analyses and on day 21 for histomorphometric analysis only (n = 6 for MSC and control groups). In a separate group of experiments (n = 3), animals with transplanted (89)Zr-labeled MSCs were serially imaged with PET for 3 weeks. Multiple comparisons were performed with two-way analysis of variance, followed by the Student t test with post hoc Bonferroni correction. RESULTS: In vessels with transplanted MSCs compared with control vessels, there was a significant decrease in Mcp-1 gene expression (day 7: mean reduction, 62%; P = .029), with a significant increase in the mean lumen vessel area (day 7: mean increase, 176% [P = .013]; day 21: mean increase, 415% [P = .011]). Moreover, this was accompanied by a significant decrease in Ki-67 index (proliferation on day 7: mean reduction, 81% [P = .0003]; proliferation on day 21: mean reduction, 60%, [P = .016]). Prolonged retention of MSCs at the adventitia was evidenced by serial PET images of (89)Zr-labeled cells. CONCLUSION: Adventitial transplantation of MSCs decreases Mcp-1 gene expression, accompanied by a reduction in venous neointimal hyperplasia.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/efectos adversos , Trasplante de Células Madre Mesenquimatosas , Neointima/patología , Tejido Adiposo/citología , Animales , Humanos , Hiperplasia/patología , Hiperplasia/prevención & control , Etiquetado Corte-Fin in Situ , Ratones , Tomografía de Emisión de Positrones , Radiofármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Nanoscale ; 16(22): 10690-10705, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38695807

RESUMEN

This research mainly highlighted an intense deep red-emitting and Mn4+-powered oxyfluoride nanophosphor, Mg14Ge4.99O16F8:0.01Mn4+ (MGOF:Mn), which was synthesized via adopting a scalable synthesis route for commercial temperature sensing and artificial plant growth applications. The electron microscopic analysis confirmed the formation of nanosized particles without any defined shape or size distribution. The obtained nanophosphor exhibited sharp emission peaks at 659 nm and 631 nm under UV (317 nm) and blue excitation (417 nm) owing to Mn4+:2Eg → 4A2g and Mn4+:2T1g → 4A2g transitions, respectively. The emission spectrum is situated in the deep red region of the CIE color diagram where the red color purity approached 100% under both the excitations. The absorption efficiency and the internal and external quantum efficiencies of this red-emitting system were calculated to be 53%, ∼77%, and ∼41%, respectively, under blue excitation of 417 nm, which indicated its potential for indoor plant cultivation. A prototype red LED was fabricated by pasting the red-emitting MGOF:Mn4+ nanophosphor powder on a 410 nm blue LED chip. The resulting electroluminescence spectrum overlapped with those of the important organic pigments of normal plants. Importantly, the thermometric properties of the nanophosphor were evaluated in detail for FIR and lifetime-based thermometry applications. The examined nanophosphor showed an extreme absolute sensitivity of 0.00326 K-1 at 373 K with excellent reproducibility and temperature resolution. Because of the small particle size and high luminescence efficiency, the nanophosphor could be implemented in various nano-devices where non-contact optical thermometry is necessary for high performance.

12.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895931

RESUMEN

The present article highlights the important progress made in the last two decades in the fields of molecular imaging and radionuclide therapy. Advancements in radiometal-based positron emission tomography, single photon emission computerized tomography, and radionuclide therapy are illustrated in terms of their production routes and ease of radiolabeling. Applications in clinical diagnostic and radionuclide therapy are considered, including human studies under clinical trials; their current stages of clinical translations and findings are summarized. Because the metalloid astatine is used for imaging and radionuclide therapy, it is included in this review. In regard to radionuclide therapy, both beta-minus (ß-) and alpha (α)-emitting radionuclides are discussed by highlighting their production routes, targeted radiopharmaceuticals, and current clinical translation stage.

13.
Front Mol Neurosci ; 16: 1130922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969558

RESUMEN

Selenium and selenoproteins play a role in many biological functions, particularly in brain development and function. This review outlines the role of each class of selenoprotein in human brain function. Most selenoproteins play a large antioxidant role within the brain. Autism spectrum disorder (ASD) has been shown to correlate with increased oxidative stress, and the presumption of selenoproteins as key players in ASD etiology are discussed. Further, current literature surrounding selenium in ASD and selenium supplementation studies are reviewed. Finally, perspectives are given for future directions of selenoprotein research in ASD.

14.
J Vis Exp ; (200)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955388

RESUMEN

Stem cell and chimeric antigen receptor (CAR) T-cell therapies are emerging as promising therapeutics for organ regeneration and as immunotherapy for various cancers. Despite significant progress having been made in these areas, there is still more to be learned to better understand the pharmacokinetics and pharmacodynamics of the administered therapeutic cells in the living system. For noninvasive, in vivo tracking of cells with positron emission tomography (PET), a novel [89Zr]Zr-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN)-mediated cell radiolabeling method has been developed utilizing 89Zr (t1/2 78.4 h). The present protocol describes a [89Zr]Zr-DBN-mediated, ready-to-use, radiolabeling synthon for direct radiolabeling of variety of cells, including mesenchymal stem cells, lineage-guided cardiopoietic stem cells, liver regenerating hepatocytes, white blood cells, melanoma cells, and dendritic cells. The developed methodology enables noninvasive PET imaging of cell trafficking for up to 7 days post-administration without affecting the nature or the function of the radiolabeled cells. Additionally, this protocol describes a stepwise method for the radiosynthesis of [89Zr]Zr-DBN, biocompatible formulation of [89Zr]Zr-DBN, preparation of cells for radiolabeling, and finally the radiolabeling of cells with [89Zr]Zr-DBN, including all the intricate details needed for the successful radiolabeling of cells.


Asunto(s)
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Inmunoterapia Adoptiva , Circonio , Línea Celular Tumoral
15.
Front Mol Neurosci ; 16: 1133218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873103

RESUMEN

To better understand zinc and copper regulation and their involvement in various biochemical pathways as it relates to autism spectrum disorder (ASD), isotopic composition of serum zinc and copper were evaluated in both healthy children and children with ASD in North America. No significant difference in isotopic composition of serum zinc or copper with respect to healthy controls and ASD children were identified. However, the isotopic composition of serum copper in boys was found to be enriched in 65Cu in comparison to previously published healthy adult copper isotopic composition. Furthermore, in both boys and girls, the average isotopic composition of serum zinc is heavier than previously published healthy adult isotopic zinc composition. There was also a negative association between total zinc concentrations in serum and the zinc isotopic composition of serum in boys. Finally, children with heavier isotopic composition of copper also showed a high degree of variability in their zinc isotopic composition. While numerous studies have measured the isotopic composition of serum zinc and copper in adults, this is one of the first studies which measured the isotopic composition of serum copper and zinc in children, specifically those diagnosed with ASD. The results of this study showed that age and gender specific normal ranges of isotopic composition must be established to effectively use isotopic composition analysis in studying various diseases including ASD.

16.
Radiol Imaging Cancer ; 5(4): e220157, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37477566

RESUMEN

Theranostics is the combination of two approaches-diagnostics and therapeutics-applied for decades in cancer imaging using radiopharmaceuticals or paired radiopharmaceuticals to image and selectively treat various cancers. The clinical use of theranostics has increased in recent years, with U.S. Food and Drug Administration (FDA) approval of lutetium 177 (177Lu) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) and 177Lu-prostate-specific membrane antigen vector-based radionuclide therapies. The field of theranostics has imminent potential for emerging clinical applications. This article reviews critical areas of active clinical advancement in theranostics, including forthcoming clinical trials advancing FDA-approved and emerging radiopharmaceuticals, approaches to dosimetry calculations, imaging of different radionuclide therapies, expanded indications for currently used theranostic agents to treat a broader array of cancers, and emerging ideas in the field. Keywords: Molecular Imaging, Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, Molecular Imaging-Target Development, PET/CT, SPECT/CT, Radionuclide Therapy, Dosimetry, Oncology, Radiobiology © RSNA, 2023.


Asunto(s)
Neoplasias , Medicina de Precisión , Estados Unidos , Masculino , Humanos , Radiofármacos/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
17.
Arch Pharm (Weinheim) ; 345(5): 368-77, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22190402

RESUMEN

The interaction between leukocytes and the vascular endothelial cells (EC) via cellular adhesion molecules plays an important role in the pathogenesis of various inflammatory and autoimmune diseases. Small molecules that block these interactions have been targeted as potential therapeutic agents against acute and chronic inflammatory diseases. In an effort to identify potent intercellular cell adhesion molecule-1 (ICAM-1) inhibitors, a large number of arylalkyl ketones, benzophenones, desoxybenzoins and chalcones and their analogs (54 in total) have been synthesized and screened for their ICAM-1 inhibitory activity. The structure-activity relationship studies of these compounds identified three potent chalcone derivatives and also demonstrated the possible mechanism for their ICAM-1 inhibitory activities. The most active compound was found to be 79.


Asunto(s)
Benzoína/análogos & derivados , Benzofenonas/farmacología , Chalconas/farmacología , Molécula 1 de Adhesión Intercelular/biosíntesis , Cetonas/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Benzoína/farmacología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Relación Estructura-Actividad
18.
Clin Nucl Med ; 47(2): 137-139, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34690295

RESUMEN

ABSTRACT: 68Ga-DOTATATE is a well-established, positron-emitting, somatostatin receptor-binding radiopharmaceutical. We present an unusual case of transiently increased blood pool uptake of 68Ga-DOTATATE in a patient with well-differentiated stage IV neuroendocrine tumor, with Ki-67 <2% (WHO grade 1) maintained on lanreotide. During serial 68Ga-DOTATATE PET/CT examinations, increased blood pool accumulation of presumably unbound 68Ga was demonstrated, which could impact the Kenning score and lead to a false treatment response assessment.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Cintigrafía , Radiofármacos , Receptores de Somatostatina
19.
Sci Rep ; 12(1): 15646, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123386

RESUMEN

Cell based therapies are evolving as an effective new approach to treat various diseases. To understand the safety, efficacy, and mechanism of action of cell-based therapies, it is imperative to follow their biodistribution noninvasively. Positron-emission-tomography (PET)-based non-invasive imaging of cell trafficking offers such a potential. Herein, we evaluated and compared three different ready-to-use direct cell radiolabeling synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA for PET imaging-based trafficking of white blood cells (WBCs) and stem cells (SCs) up to 7 days in athymic nude mice. We compared the degree of 89Zr complexation and percentage of cell radiolabeling efficiencies with each. All three synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA, were successfully prepared, and used for radiolabeling of WBCs and SCs. The highest cell radiolabeling yield was found for [89Zr]Zr-DFO-Bn-NCS, followed by [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA. In terms of biodistribution, WBCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS, were primarily accumulated in liver and spleen, whereas SCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS were found in lung, liver and spleen. A high bone uptake was observed for both WBCs and SCs radiolabeled with [89Zr]Zr-Hy3ADA5-SA, suggesting in-vivo instability of [89Zr]Zr-Hy3ADA5-SA synthon. This study offers an appropriate selection of ready-to-use radiolabeling synthons for noninvasive trafficking of WBCs, SCs and other cell-based therapies.


Asunto(s)
Radioisótopos , Circonio , Animales , Leucocitos , Ratones , Ratones Desnudos , Células Madre , Distribución Tisular , Tomografía Computarizada por Rayos X
20.
Am J Nucl Med Mol Imaging ; 12(1): 15-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295887

RESUMEN

Due to the advent of various biologics like antibodies, proteins, cells, viruses, and extracellular vesicles as biomarkers for disease diagnosis, progression, and as therapeutics, there exists a need to have a simple and ready to use radiolabeling synthon to enable noninvasive imaging trafficking studies. Previously, we reported [89Zr]zirconium-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN) as a synthon for the radiolabeling of biologics to allow PET imaging of cell trafficking. In this study, we focused on improving the molar activity (Am) of [89Zr]Zr-DBN, by enhancing 89Zr production on a low-energy cyclotron and developing a new reverse phase HPLC method to purify [89Zr]Zr-DBN. To enhance 89Zr production, a new solid target was designed, and production yield was optimized by varying, thickness of yttrium foil, beam current, irradiation duration and proton beam energy. After optimization, 4.78±0.33 GBq (129.3±8.9 mCi) of 89Zr was produced at 40 µA for 180 min (3 h) proton irradiation decay corrected to the end of bombardment with a saturation yield of 4.56±0.31 MBq/µA. Additionally, after reverse phase HPLC purification the molar activity of [89Zr]Zr-DBN was found to be in 165-316 GBq/µmol range. The high molar activity of [89Zr]Zr-DBN also allowed radiolabeling of low concentration of proteins in relatively higher yield. The stability of [89Zr]Zr-DBN was measured over time with and without the presence of ascorbic acid. The newly designed solid target assembly and HPLC method of [89Zr]Zr-DBN purification can be adopted in the routine production of 89Zr and [89Zr]Zr-DBN, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA