Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824930

RESUMEN

The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is translated into dipeptide repeat proteins, among which poly-proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo . PR partitions to the nucleus when expressed in neurons and other cell types. Using drosophila and primary rat cortical neurons as model systems, we show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR accumulates in the nucleolus, a site of ribosome biogenesis that regulates the cell stress response. We examined the effect of nucleolar PR accumulation and its impact on nucleolar function and determined that PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels, either genetically or by increasing its degradation, also prevented PR-mediated neurotoxic phenotypes both in in-vitro and in-vivo models. We also investigated whether PR could cause the senescence phenotype in neurons but observed none. Instead, we found induction of apoptosis via caspase-3 activation. In summary, we uncovered the central role of nucleolar dysfunction upon PR expression in the context of C9-ALS/FTD.

2.
iScience ; 26(9): 107505, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664610

RESUMEN

The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is aberrantly translated in the sense and antisense directions into dipeptide repeat proteins, among which poly proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo. PR partitions to the nucleus when heterologously expressed in neurons and other cell types. We show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR strongly accumulates in the nucleolus, a nuclear structure critical in regulating the cell stress response. We determined that, in neurons, PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels also prevented PR-mediated neurotoxicity both in in-vitro and in-vivo models. We investigated if PR could induce the senescence phenotype in neurons. However, we did not observe any indications of such an effect. Instead, we found evidence for the induction of programmed cell death via caspase-3 activation.

3.
Neurol India ; 52(1): 36-42, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15069237

RESUMEN

The fragile X syndrome is the most frequent cause of inherited mental retardation. It is caused by a dynamic mutation: the progressive expansion of polymorphic (CGG)n trinucleotide repeats located in the promoter region of the FMRI gene at Xq27.3. The cloning of the FMRI gene and the elucidation of the molecular basis of the fragile X syndrome is of great importance for the diagnosis and understanding of this unusual type of mutation. Although extensively studied, the mechanism behind the transition from stable normal (CGG)n alleles to the carrier state (an unstable premutation) and from premutation to mutation is partially understood. The clinical diagnosis of fragile X mental retardation (FXMR) is not possible as dysmorphic features are subtle. Molecular diagnosis by Southern Blot is the confirmatory test that makes carrier detection and prenatal diagnosis possible. As the risk of recurrence of FXMR is high in the family and carrier relatives, an identification of fragile X positive children, and offering carrier detection and prenatal diagnosis to the families is very important. It is possible by screening mentally retarded children and adults even if there is no family history of mental retardation or typical behavioral or physical features associated with the fragile X phenotype. In this review we have discussed the method for the diagnosis and counseling of the families. The complexities due to premutation and the variable severity of manifestations in carrier females need to be understood while counseling fragile X families.


Asunto(s)
Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Asesoramiento Genético , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/patología , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/etiología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA