Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 46(1): 38-50, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986454

RESUMEN

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Asunto(s)
Proteínas de Fase Aguda/inmunología , Proteínas Portadoras/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 4/inmunología , Animales , Humanos , Ratones , Microscopía Electrónica de Transmisión , Transducción de Señal/inmunología
2.
J Immunol ; 207(7): 1735-1746, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462314

RESUMEN

The house dust mite is the most common cause of allergic diseases, and TLR4 acts as an overarching receptor for allergic responses. This study aimed to identify novel allergen binding to TLR4 in house dust mites and unveil its unique role in allergic responses. Der p 38 was purified and characterized by liquid chromatography tandem mass spectrometry-based peptide mapping. Biolayer interferometry and structure modeling unveiled TLR4-binding activity and the structure of recombinant Der p 38. The allergenicity of Der p 38 was confirmed by a skin prick test, and basophil activation and dot blot assays. The skin prick test identified 24 out of 45 allergic subjects (53.3%) as Der p 38+ subjects. Der p 38-augmented CD203c expression was noted in the basophils of Der p 38+ allergic subjects. In animal experiments with wild-type and TLR4 knockout BALB/c mice, Der p 38 administration induced the infiltration of neutrophils as well as eosinophils and exhibited clinical features similar to asthma via TLR4 activation. Persistent Der p 38 administration induced severe neutrophil inflammation. Der p 38 directly suppressed the apoptosis of allergic neutrophils and eosinophils, and enhanced cytokine production in human bronchial epithelial cells, inhibiting neutrophil apoptosis. The mechanisms involved TLR4, LYN, PI3K, AKT, ERK, and NF-κB. These findings may contribute to a deep understanding of Der p 38 as a bridge allergen between eosinophilic and neutrophilic inflammation in the pathogenic mechanisms of allergy.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Eosinófilos/inmunología , Hipersensibilidad/inmunología , Neutrófilos/fisiología , Mucosa Respiratoria/inmunología , Animales , Antígenos Dermatofagoides/aislamiento & purificación , Células Cultivadas , Modelos Animales de Enfermedad , Mapeo Epitopo , Femenino , Humanos , Inmunomodulación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Activación Neutrófila , Unión Proteica , Transducción de Señal , Pruebas Cutáneas , Receptor Toll-Like 4/metabolismo
3.
New Phytol ; 235(2): 743-758, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35403705

RESUMEN

Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus. We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration. Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis-elements of duplicated genes are associated with convergent expression. Genome-wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa-originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation. Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis-trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.


Asunto(s)
Brassicaceae , Genoma de Planta , Brassicaceae/genética , Metilación de ADN/genética , Hibridación Genética
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445142

RESUMEN

It is difficult to treat allergic diseases including asthma completely because its pathogenesis remains unclear. House dust mite (HDM) is a critical allergen and Toll-like receptor (TLR) 4 is a member of the toll-like receptor family, which plays an important role in allergic diseases. The purpose of this study was to characterize a novel allergen, Der f 38 binding to TLR4, and unveil its role as an inducer of allergy. Der f 38 expression was detected in the body and feces of Dermatophagoides farinae (DF). Electron microscopy revealed that it was located in the granule layer, the epithelium layer, and microvilli of the posterior midgut. The skin prick test showed that 60% of allergic subjects were Der f 38-positive. Der f 38 enhanced surface 203c expression in basophils of Der f 38-positive allergic subjects. By analysis of the model structure of Der p 38, the expected epitope sites are exposed on the exterior side. In animal experiments, Der f 38 triggered an infiltration of inflammatory cells. Intranasal (IN) administration of Der f 38 increased neutrophils in the lung. Intraperitoneal (IP) and IN injections of Der f 38 induced both eosinophils and neutrophils. Increased total IgE level and histopathological features were found in BALB/c mice treated with Der f 38 by IP and IN injections. TLR4 knockout (KO) BALB/c mice exhibited less inflammation and IgE level in the sera compared to wild type (WT) mice. Der f 38 directly binds to TLR4 using biolayer interferometry. Der f 38 suppressed the apoptosis of neutrophils and eosinophils by downregulating proteins in the proapoptotic pathway including caspase 9, caspase 3, and BAX and upregulating proteins in the anti-apoptotic pathway including BCL-2 and MCL-1. These findings might shed light on the pathogenic mechanisms of allergy to HDM.


Asunto(s)
Alérgenos/inmunología , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Dermatophagoides farinae/inmunología , Hipersensibilidad/inmunología , Unión Proteica/inmunología , Receptor Toll-Like 4/inmunología , Secuencia de Aminoácidos , Animales , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina E/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Pyroglyphidae/metabolismo , Pruebas Cutáneas/métodos
5.
Int J Med Sci ; 17(4): 498-509, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174780

RESUMEN

S100A8 and S100A9 are important proteins in the pathogenesis of allergy. Asthma is an allergic lung disease, characterized by bronchial inflammation due to leukocytes, bronchoconstriction, and allergen-specific IgE. In this study, we examined the role of S100A8 and S100A9 in the interaction of cytokine release from bronchial epithelial cells, with constitutive apoptosis of neutrophils. S100A8 and S100A9 induce increased secretion of neutrophil survival cytokines such as MCP-1, IL-6 and IL-8. This secretion is suppressed by TLR4 inhibitor), LY294002, AKT inhibitor, PD98059, SB202190, SP600125, and BAY-11-7085. S100A8 and S100A9 also induce the phosphorylation of AKT, ERK, p38 MAPK and JNK, and activation of NF-κB, which were blocked after exposure to TLR4i, LY294002, AKTi, PD98059, SB202190 or SP600125. Furthermore, supernatants collected from bronchial epithelial cells after S100A8 and S100A9 stimulation suppressed the apoptosis of normal and asthmatic neutrophils. These inhibitory mechanisms are involved in suppression of caspase 9 and caspase 3 activation, and BAX expression. The degradation of MCL-1 and BCL-2 was also blocked by S100A8 and S100A9 stimulation. Essentially, neutrophil apoptosis was blocked by co-culture of normal and asthmatic neutrophils with BEAS-2B cells in the presence of S100A8 and S100A9. These findings will enable elucidation of asthma pathogenesis.


Asunto(s)
Asma/metabolismo , Calgranulina A/uso terapéutico , Calgranulina B/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Receptor Toll-Like 4/metabolismo
6.
J Phys Ther Sci ; 30(12): 1428-1433, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30568329

RESUMEN

[Purpose] The purpose of this study was to investigate the educational needs on the job competence for physical therapist assistant in the students of Quang Tri medical college in Vietnam. [Participants and Methods] Participants consisted of 17 individuals in the educational program for physical therapist assistant in Quang Tri medical college. The importance recognition ranking and current levels were measured by self-assessment for job competence of physical therapist assistant using a questionnaire. The educational needs were calculated by importance recognition ranking and current level by a self-assessment of job competence. [Results] The importance recognition ranking of job competence appeared to show a 'system checkup' as the top ranked category. The rank of current levels of competencies was determined by self-assessment of job competence and results showed that 'cooperation, communication, and documentation' was the highest category of the current levels. The highest rank of the educational needs was 'counseling and education'. [Conclusion] The educational needs rank of job competence appeared to be 'counseling and education' foremost. Counseling and education with the patient is a fundamental component of effective healthcare. Therefore, it should be considered a priority for the educational curriculum of physical therapist assistant.

7.
J Biol Chem ; 290(47): 28502-28514, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26405033

RESUMEN

Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , Genoma Bacteriano , Rayos Ultravioleta , Cianobacterias/metabolismo , Fotobiología
8.
Plant J ; 81(4): 625-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25641104

RESUMEN

Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under-use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high-density genetic mapping and genome-wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome-wide association analyses. More than four million high-quality SNPs identified from high-depth genome re-sequencing of 16 soybean accessions and low-depth genome re-sequencing of 31 soybean accessions were used to select 180,961 SNPs for creation of the Axiom(®) SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170,223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene-rich chromosomal regions suggest that this array may be suitable for genome-wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.


Asunto(s)
Técnicas de Genotipaje , Glycine max/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Hibridación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
BMC Genomics ; 17: 408, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27229151

RESUMEN

BACKGROUND: Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. RESULTS: Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. CONCLUSION: This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.


Asunto(s)
Cruzamiento , Evolución Molecular , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica/métodos , Oryza/genética , Análisis de Secuencia de ADN , Variación Genética , Genética de Población , Mutación INDEL , Polimorfismo de Nucleótido Simple
10.
Plant Mol Biol ; 90(4-5): 503-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26820138

RESUMEN

Glucosinolates (GSLs) are secondary metabolites that have anticarcinogenic activity and play defense roles in plants of the Brassicaceae family. MYB28 is known as a transcription factor that regulates aliphatic GSL biosynthesis in Arabidopsis thaliana. Brassicaceae plants have three orthologous copies of AtMYB28 derived from recent genome triplication. These BrMYB28 genes have a high level of sequence homology, with 81-87% similarities in the coding DNA sequence compared to Arabidopsis. Overexpression of three paralogous BrMYB28 genes in transgenic Chinese cabbage increased the total GSL content in all T1 generation plants and in two inbred lines of homozygous T2 plants. The highest total GSL contents were detected in homozygous T2 lines overexpressing BrMYB28.1, which showed an approximate fivefold increase compared to that of nontransgenic plants. The homozygous T2 lines with overexpressed BrMYB28.1 also showed an increased content of aliphatic, indolic, and aromatic GSLs compared to that of nontransgenic plants. Furthermore, all of the three BrMYB28 genes were identified as negative regulators of BrAOP2 and positive regulators of BrGSL-OH in the homozygous T2 lines. These data indicate the regulatory mechanism of GSL biosynthesis in B. rapa is unlike that in A. thaliana. Our results will provide useful information for elucidating the regulatory mechanism of GSL biosynthesis in polyploid plants.


Asunto(s)
Brassica rapa/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Brassica rapa/genética , Homocigoto , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Transcriptoma
11.
Cytokine ; 86: 53-63, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27459393

RESUMEN

Dysregulation of neutrophil apoptosis causes pathogenesis and aggravation of allergy. S100A9 exists as one of the proteins in the neutrophils, triggering inflammatory responses by activating the immune cells. In this study, we investigated whether S100A9 affects constitutive neutrophil apoptosis by activating the monocytes in normal and allergic subjects. Supernatant from human monocytic THP-1 cells after treatment with S100A9 suppressed normal neutrophil apoptosis by inhibiting the activations of caspase 9 and caspase 3. S100A9 upregulated the release of MCP-1, IL-6, and IL-8 in THP-1 cells. An increase in cytokine was suppressed by CLI-095, a Toll-like receptor (TLR) 4 inhibitor, PP2, a Src inhibitor, rottlerin, a PKCδ inhibitor, MAP kinase inhibitors, including PD98059, SB202190, and SP600125, and BAY-11-7085, an NF-κB inhibitor. Src, PKCδ, ERK1/2, p38 MAPK, and JNK were phosphorylated by S100A9. The phosphorylation of Src and PKCδ was suppressed by CLI-095, and the activation of ERK1/2, p38 MAPK, and JNK was inhibited by CLI-095, PP2, and rottlerin. S100A9 induced NF-κB activity, and the activation was suppressed by CLI-095, PP2, rottlerin, and MAPK kinase inhibitors. In normal and allergic subjects, supernatant from normal and allergic monocytes after stimulation with S100A9 suppressed normal and allergic neutrophil apoptosis, respectively; MCP-1, IL-6, and IL-8 in the supernatant was increased by S100A9. The cytokine secretion induced by S100A9 is related to TLR4, Src, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. Taken together, S100A9 induces anti-apoptotic effect on normal and allergic neutrophils by increasing cytokine secretion of monocytes. These findings may help us to better understand neutrophil apoptosis regulated by S100A9 and pathogenesis of allergic diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Calgranulina B/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Citocinas/metabolismo , Neutrófilos/patología , Receptor Toll-Like 4/metabolismo , Acetofenonas/farmacología , Benzopiranos/farmacología , Calgranulina B/farmacología , Inhibidores de Caspasas , Línea Celular , Quimiocina CCL2/metabolismo , Medios de Cultivo/farmacología , Humanos , Hipersensibilidad/inmunología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Monocitos/efectos de los fármacos , Monocitos/inmunología , FN-kappa B/antagonistas & inhibidores , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología
12.
Theor Appl Genet ; 129(9): 1797-814, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27377547

RESUMEN

KEY MESSAGE: This study provides high-quality variation data of diverse radish genotypes. Genome-wide SNP comparison along with RNA-seq analysis identified candidate genes related to domestication that have potential as trait-related markers for genetics and breeding of radish. Radish (Raphanus sativus L.) is an annual root vegetable crop that also encompasses diverse wild species. Radish has a long history of domestication, but the origins and selective sweep of cultivated radishes remain controversial. Here, we present comprehensive whole-genome resequencing analysis of radish to explore genomic variation between the radish genotypes and to identify genetic bottlenecks due to domestication in Asian cultivars. High-depth resequencing and multi-sample genotyping analysis of ten cultivated and seven wild accessions obtained 4.0 million high-quality homozygous single-nucleotide polymorphisms (SNPs)/insertions or deletions. Variation analysis revealed that Asian cultivated radish types are closely related to wild Asian accessions, but are distinct from European/American cultivated radishes, supporting the notion that Asian cultivars were domesticated from wild Asian genotypes. SNP comparison between Asian genotypes identified 153 candidate domestication regions (CDRs) containing 512 genes. Network analysis of the genes in CDRs functioning in plant signaling pathways and biochemical processes identified group of genes related to root architecture, cell wall, sugar metabolism, and glucosinolate biosynthesis. Expression profiling of the genes during root development suggested that domestication-related selective advantages included a main taproot with few branched lateral roots, reduced cell wall rigidity and favorable taste. Overall, this study provides evolutionary insights into domestication-related genetic selection in radish as well as identification of gene candidates with the potential to act as trait-related markers for background selection of elite lines in molecular breeding.


Asunto(s)
Domesticación , Genoma de Planta , Raphanus/genética , Evolución Molecular , Genotipo , Mutación INDEL , Polimorfismo de Nucleótido Simple , ARN de Planta/genética , Análisis de Secuencia de ARN
13.
Theor Appl Genet ; 129(7): 1357-1372, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038817

RESUMEN

KEYMESSAGE: This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


Asunto(s)
Genoma de Planta , Raphanus/genética , Brassica/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Hibridación Genómica Comparativa , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
14.
Plant J ; 77(6): 906-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456463

RESUMEN

Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat-rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR-RTs) and 11 LTR-RT derivatives accounting for more than 80% of the BAC sequences. The LTR-RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30-Gbp Illumina whole-genome shotgun reads to the BAC sequences revealed that these five LTR-RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2-rich chromosomes and the other in interstitial regions on PgDel2-poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Panax/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Evolución Molecular , Heterocromatina , Hibridación Fluorescente in Situ , Modelos Genéticos , Datos de Secuencia Molecular , Panax/citología , Filogenia , Análisis de Secuencia de ADN , Tetraploidía
15.
Theor Appl Genet ; 128(2): 259-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403353

RESUMEN

KEY MESSAGE: This manuscript provides a genetic map of Raphanus sativus that has been used as a reference genetic map for an ongoing genome sequencing project. The map was constructed based on genotyping by whole-genome resequencing of mapping parents and F 2 population. Raphanus sativus is an annual vegetable crop species of the Brassicaceae family and is one of the key plants in the seed industry, especially in East Asia. Assessment of the R. sativus genome provides fundamental resources for crop improvement as well as the study of crop genome structure and evolution. With the goal of anchoring genome sequence assemblies of R. sativus cv. WK10039 whose genome has been sequenced onto the chromosomes, we developed a reference genetic map based on genotyping of two parents (maternal WK10039 and paternal WK10024) and 93 individuals of the F2 mapping population by whole-genome resequencing. To develop high-confidence genetic markers, ~83 Gb of parental lines and ~591 Gb of mapping population data were generated as Illumina 100 bp paired-end reads. High stringent sequence analysis of the reads mapped to the 344 Mb of genome sequence scaffolds identified a total of 16,282 SNPs and 150 PCR-based markers. Using a subset of the markers, a high-density genetic map was constructed from the analysis of 2,637 markers spanning 1,538 cM with 1,000 unique framework loci. The genetic markers integrated 295 Mb of genome sequences to the cytogenetically defined chromosome arms. Comparative analysis of the chromosome-anchored sequences with Arabidopsis thaliana and Brassica rapa revealed that the R. sativus genome has evident triplicated sub-genome blocks and the structure of gene space is highly similar to that of B. rapa. The genetic map developed in this study will serve as fundamental genomic resources for the study of R. sativus.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Técnicas de Genotipaje , Raphanus/genética , Hibridación Genómica Comparativa , ADN de Plantas/genética , Marcadores Genéticos , Genotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
16.
Nature ; 458(7242): 1191-5, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19252480

RESUMEN

The lipopolysaccharide (LPS) of Gram negative bacteria is a well-known inducer of the innate immune response. Toll-like receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form a heterodimer that recognizes a common 'pattern' in structurally diverse LPS molecules. To understand the ligand specificity and receptor activation mechanism of the TLR4-MD-2-LPS complex we determined its crystal structure. LPS binding induced the formation of an m-shaped receptor multimer composed of two copies of the TLR4-MD-2-LPS complex arranged symmetrically. LPS interacts with a large hydrophobic pocket in MD-2 and directly bridges the two components of the multimer. Five of the six lipid chains of LPS are buried deep inside the pocket and the remaining chain is exposed to the surface of MD-2, forming a hydrophobic interaction with the conserved phenylalanines of TLR4. The F126 loop of MD-2 undergoes localized structural change and supports this core hydrophobic interface by making hydrophilic interactions with TLR4. Comparison with the structures of tetra-acylated antagonists bound to MD-2 indicates that two other lipid chains in LPS displace the phosphorylated glucosamine backbone by approximately 5 A towards the solvent area. This structural shift allows phosphate groups of LPS to contribute to receptor multimerization by forming ionic interactions with a cluster of positively charged residues in TLR4 and MD-2. The TLR4-MD-2-LPS structure illustrates the remarkable versatility of the ligand recognition mechanisms employed by the TLR family, which is essential for defence against diverse microbial infection.


Asunto(s)
Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/química , Antígeno 96 de los Linfocitos/inmunología , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad
17.
BMC Genomics ; 15: 149, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24559437

RESUMEN

BACKGROUND: Expressed sequence tag (EST)-based markers are preferred because they reflect transcribed portions of the genome. We report the development of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers derived from transcriptome sequences in cabbage, and their utility for map construction. RESULTS: Transcriptome sequences were obtained from two cabbage parental lines, C1184 and C1234, which are susceptible and resistant to black rot disease, respectively, using the 454 platform. A total of 92,255 and 127,522 reads were generated and clustered into 34,688 and 40,947 unigenes, respectively. We identified 2,405 SSR motifs from the unigenes of the black rot-resistant parent C1234. Trinucleotide motifs were the most abundant (66.15%) among the repeat motifs. In addition, 1,167 SNPs were detected between the two parental lines. A total of 937 EST-based SSR and 97 SNP-based dCAPS markers were designed and used for detection of polymorphism between parents. Using an F2 population, we built a genetic map comprising 265 loci, and consisting of 98 EST-based SSRs, 21 SNP-based dCAPS, 55 IBP markers derived from B. rapa genome sequence and 91 public SSRs, distributed on nine linkage groups spanning a total of 1,331.88 cM with an average distance of 5.03 cM between adjacent loci. The parental lines used in this study are elite breeding lines with little genetic diversity; therefore, the markers that mapped in our genetic map will have broad spectrum utility. CONCLUSIONS: This genetic map provides additional genetic information to the existing B. oleracea map. Moreover, the new set of EST-based SSR and dCAPS markers developed herein is a valuable resource for genetic studies and will facilitate cabbage breeding. Additionally, this study demonstrates the usefulness of NGS transcriptomes for the development of genetic maps even with little genetic diversity in the mapping population.


Asunto(s)
Brassica/genética , Biología Computacional/métodos , Etiquetas de Secuencia Expresada , Transcriptoma , Mapeo Cromosómico , Perfilación de la Expresión Génica , Ligamiento Genético , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Polimorfismo Genético
18.
Microb Pathog ; 66: 24-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24361345

RESUMEN

Infection with Pseudomonas aeruginosa results in a massive accumulation of neutrophils in response to prolonged and sustained expression of inflammatory mediators. The major chemokine associated with this excessive neutrophil recruitment is IL-8, the accumulation of which is a hallmark of cornea and cystic fibrosis airway inflammation. To date, several P. aeruginosa-associated and extracellular factors required for the stimulation of IL-8 expression have been identified. Here, we report a novel effector molecule, nucleoside diphosphate kinase (Ndk), which increases the expression of IL-8 by translocating into host cells. The induction appears to be dependent on both the kinase activity of Ndk and an additional bacterial factor, flagellin, via an NF-κB signaling pathway. This study demonstrates the role of a novel effector, Ndk, which is capable of inducing prominent inflammatory chemokine IL-8 expression with the aid of flagellin during P. aeruginosa infection.


Asunto(s)
Células Epiteliales/microbiología , Flagelos/metabolismo , Interleucina-8/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Pseudomonas aeruginosa/genética , Células Cultivadas , Células Epiteliales/metabolismo , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Interleucina-8/genética , FN-kappa B/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Nucleósido-Difosfato Quinasa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Regulación hacia Arriba
19.
Theor Appl Genet ; 127(9): 1975-89, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056003

RESUMEN

KEY MESSAGE: This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Raphanus/genética , Brassica/genética , Secuencia Conservada , ADN de Plantas/genética , Análisis de Secuencia de ADN , Sintenía
20.
Theor Appl Genet ; 127(2): 509-19, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24346479

RESUMEN

KEY MESSAGE: A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06. The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross. Both a doubled haploid population, VCS3M-DH, an F2 and two BC1 (F1 × VC1 and F1 × SR5) populations were created. Population tests revealed that the resistance to the TuMV C4 isolate in B. rapa is controlled by a single dominant gene. This resistance gene, TuRB07 was positioned on the top of linkage group A06 of the B. rapa genome through bulk segregation analysis and fine mapping recombinants in three doubled haploid- and one backcross population using microsatellite markers developed from BAC end sequences. Within the region between the two closely linked markers flanking TuRB07, H132A24-s1, and KS10960, in the Chiifu reference genome, two genes encoding nucleotide-binding site and leucine-rich repeat proteins with a coiled-coil motif (CC-NBS-LRR), Bra018862 and Bra018863 were identified as candidate resistance genes. The gene Bra018862 is truncated, but the gene Bra018863 has all the domains to function. Furthermore, the analysis of structural variation using resequencing data of VC1 and SR5 revealed that Bra018863 might be a functional gene because the gene has no structural variation in the resistant line VC1 when compared with Chiifu, whereas at the other NBS-LRR genes large deletions were identified in the resistant line. Allelic differences of Bra018863 were found between VC1 and SR5, supporting the notion that this gene is a putative candidate gene for the virus resistance.


Asunto(s)
Brassica rapa/virología , Genes Dominantes , Virus del Mosaico/fisiología , Secuencia de Bases , Brassica rapa/genética , Marcadores Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA