Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 165(5): 1224-1237, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114036

RESUMEN

The unicellular ancestor of animals had a complex repertoire of genes linked to multicellular processes. This suggests that changes in the regulatory genome, rather than in gene innovation, were key to the origin of animals. Here, we carry out multiple functional genomic assays in Capsaspora owczarzaki, the unicellular relative of animals with the largest known gene repertoire for transcriptional regulation. We show that changing chromatin states, differential lincRNA expression, and dynamic cis-regulatory sites are associated with life cycle transitions in Capsaspora. Moreover, we demonstrate conservation of animal developmental transcription-factor networks and extensive network interconnection in this premetazoan organism. In contrast, however, Capsaspora lacks animal promoter types, and its regulatory sites are small, proximal, and lack signatures of animal enhancers. Overall, our results indicate that the emergence of animal multicellularity was linked to a major shift in genome cis-regulatory complexity, most notably the appearance of distal enhancer regulation.


Asunto(s)
Evolución Biológica , Eucariontes/genética , Elementos Reguladores de la Transcripción , Animales , Eucariontes/clasificación , Eucariontes/citología , Redes Reguladoras de Genes , Genoma , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , ARN no Traducido
2.
Development ; 145(10)2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29752387

RESUMEN

How animals emerged from their unicellular ancestor remains a major evolutionary question. New genome data from the closest unicellular relatives of animals have provided important insights into the evolution of animal multicellularity. We know that the unicellular ancestor of animals had an unexpectedly complex genetic repertoire, including many genes that are key to animal development and multicellularity. Thus, assessing the function of these genes among unicellular relatives of animals is key to understanding how they were co-opted at the onset of the Metazoa. However, such analyses have been hampered by the lack of genetic tools. Progress has been made in choanoflagellates and teretosporeans, two of the three lineages closely related to animals, whereas no tools are yet available for functional analysis in the third lineage: the filastereans. Importantly, filastereans have a striking repertoire of genes involved in transcriptional regulation and other developmental processes. Here, we describe a reliable transfection method for the filasterean Capsaspora owczarzaki We also provide a set of constructs for visualising subcellular structures in live cells. These tools convert Capsaspora into a unique experimentally tractable organism to use to investigate the origin and evolution of animal multicellularity.


Asunto(s)
ADN/genética , Genoma de Protozoos/genética , Mesomycetozoea/genética , Plásmidos/genética , Transfección/métodos , Animales , Evolución Biológica , Evolución Molecular , Regulación de la Expresión Génica/genética
3.
Genome Res ; 24(7): 1075-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24709821

RESUMEN

The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115-200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan.


Asunto(s)
Epigénesis Genética , Epigenómica , Peces/genética , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Vertebrados/genética , Animales , Análisis por Conglomerados , Epigenómica/métodos , Peces/anatomía & histología , Peces/clasificación , Peces/embriología , Perfilación de la Expresión Génica , Histonas/metabolismo , Especificidad de Órganos/genética , Oryzias , Especificidad de la Especie , Transcripción Genética , Vertebrados/anatomía & histología , Vertebrados/clasificación , Vertebrados/embriología , Pez Cebra
4.
Curr Biol ; 30(21): 4270-4275.e4, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32857975

RESUMEN

In animals, cell-matrix adhesions are essential for cell migration, tissue organization, and differentiation, which have central roles in embryonic development [1-6]. Integrins are the major cell surface adhesion receptors mediating cell-matrix adhesion in animals. They are heterodimeric transmembrane proteins that bind extracellular matrix (ECM) molecules on one side and connect to the actin cytoskeleton on the other [7]. Given the importance of integrin-mediated cell-matrix adhesion in development of multicellular animals, it is of interest to discover when and how this machinery arose during evolution. Comparative genomic analyses have shown that core components of the integrin adhesome pre-date the emergence of animals [8-11]; however, whether it mediates cell adhesion in non-metazoan taxa remains unknown. Here, we investigate cell-substrate adhesion in Capsaspora owczarzaki, the closest unicellular relative of animals with the most complete integrin adhesome [11, 12]. Previous work described that the life cycle of C. owczarzaki (hereafter, Capsaspora) includes three distinct life stages: adherent; cystic; and aggregative [13]. Using an adhesion assay, we show that, during the adherent life stage, C. owczarzaki adheres to surfaces using actin-dependent filopodia. We show that integrin ß2 and its associated protein vinculin localize as distinct patches in the filopodia. We also demonstrate that substrate adhesion and integrin localization are enhanced by mammalian fibronectin. Finally, using a specific antibody for integrin ß2, we inhibited cell adhesion to a fibronectin-coated surface. Our results suggest that adhesion to the substrate in C. owczarzaki is mediated by integrins. We thus propose that integrin-mediated adhesion pre-dates the emergence of animals.


Asunto(s)
Adhesión Celular/fisiología , Eucariontes/fisiología , Antígenos CD18/metabolismo , Eucariontes/citología , Fibronectinas/metabolismo , Integrinas/metabolismo , Seudópodos/metabolismo , Vinculina/metabolismo
5.
Elife ; 2: e01287, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24368732

RESUMEN

The evolution of metazoans from their unicellular ancestors was one of the most important events in the history of life. However, the cellular and genetic changes that ultimately led to the evolution of multicellularity are not known. In this study, we describe an aggregative multicellular stage in the protist Capsaspora owczarzaki, a close unicellular relative of metazoans. Remarkably, transition to the aggregative stage is associated with significant upregulation of orthologs of genes known to establish multicellularity and tissue architecture in metazoans. We further observe transitions in regulated alternative splicing during the C. owczarzaki life cycle, including the deployment of an exon network associated with signaling, a feature of splicing regulation so far only observed in metazoans. Our results reveal the existence of a highly regulated aggregative stage in C. owczarzaki and further suggest that features of aggregative behavior in an ancestral protist may had been co-opted to develop some multicellular properties currently seen in metazoans. DOI: http://dx.doi.org/10.7554/eLife.01287.001.


Asunto(s)
Amoeba/fisiología , División Celular , Evolución Molecular , Adaptación Psicológica , Empalme Alternativo , Amoeba/clasificación , Amoeba/genética , Amoeba/crecimiento & desarrollo , Ciclo Celular , División Celular/genética , Regulación de la Expresión Génica , Filogenia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA