Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 449(7159): 228-32, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728716

RESUMEN

A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Neuronas/metabolismo , Obesidad/fisiopatología , Proopiomelanocortina/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Canales Iónicos/metabolismo , Glicósidos Iridoides , Iridoides/farmacología , Ratones , Ratones Obesos , Ratones Transgénicos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Obesidad/inducido químicamente , Obesidad/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteína Desacopladora 2
2.
Cell Metab ; 3(6): 417-27, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16753577

RESUMEN

Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced beta cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-mediated proton leak. In pancreatic islet cells, genipin increases mitochondrial membrane potential, increases ATP levels, closes K(ATP) channels, and stimulates insulin secretion. These actions of genipin occur in a UCP2-dependent manner. Importantly, acute addition of genipin to isolated islets reverses high glucose- and obesity-induced beta cell dysfunction. Thus, genipin and/or chemically modified variants of genipin are useful research tools for studying biological processes thought to be controlled by UCP2. In addition, these agents represent lead compounds that comprise a starting point for the development of therapies aimed at treating beta cell dysfunction.


Asunto(s)
Glucosa/antagonistas & inhibidores , Compuestos Heterocíclicos con 3 Anillos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Obesidad/metabolismo , Piranos/farmacología , Adenosina Trifosfato/metabolismo , Aldehídos/antagonistas & inhibidores , Aldehídos/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Glucosa/farmacología , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/fisiología , Canales Iónicos , Glicósidos Iridoides , Iridoides , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo , Conformación Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Protones , Piranos/química , Proteína Desacopladora 2
3.
Front Horm Res ; 36: 118-134, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18230899

RESUMEN

The current worldwide epidemic of obesity and metabolic diseases has energised the search for new approaches to treat these conditions. Type 2 diabetes appears to involve an interplay between susceptible genetic backgrounds and environmental factors including highly calorific westernised diets. The latter may generate 'glucolipotoxic' conditions which affect both the pancreatic beta-cell and insulin-sensitive tissues. Here we focus on efforts to better understand the basic signalling mechanisms through which the beta-cell senses changes in glucose concentration and how this process may become defective in type 2 diabetes. The recent demonstrations, through whole genome association studies, of important roles for genes involved in the control of cell cycle, as well as intracellular ion homeostasis, further highlight the central role of the beta-cell in both the pathogenesis of the disease and as a therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Insulina/fisiología , Obesidad/fisiopatología , Animales , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Exocitosis/fisiología , Ácidos Grasos no Esterificados/toxicidad , Glucosa/metabolismo , Glucosa/toxicidad , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/fisiopatología , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Lípidos/toxicidad , MicroARNs/fisiología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , PPAR gamma/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología
4.
Diabetes ; 55(4): 1057-65, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16567529

RESUMEN

The mechanism(s) by which chronic hyperglycemia impairs glucose-stimulated insulin secretion is poorly defined. Here, we compare the "nanomechanics" of single exocytotic events in primary rat pancreatic beta-cells cultured for 48 h at optimal (10 mmol/l) or elevated (30 mmol/l) glucose concentrations. Cargo release was imaged by total internal reflection fluorescence microscopy of lumen-targeted probes (neuropeptide Y [NPY]-pH-insensitive yellow fluorescent protein [NPY-Venus] or NPY-monomeric red fluorescent protein), while the fate of the vesicle membrane was reported simultaneously with phosphatase-on-the-granule-of-insulinoma-enhanced green fluorescent protein. Under all conditions studied, exocytosis proceeded via a "cavity recapture" mechanism in which the vesicle and plasma membranes fused transiently. While essentially complete release of NPY-Venus was observed in 24 +/- 1% of glucose-stimulated exocytotic events in cells maintained at 10 mmol/l glucose, this value was reduced reversibly to 5 +/- 2% of events by culture at 30 mmol/l glucose, in line with decreases in Glut2 and glucokinase gene expression, and attenuated glucose-stimulated increases in NADPH and intracellular [Ca2+]. Since vesicle release in response to cell depolarization with KCl was not affected by culture at 30 mmol/l glucose, we conclude that hyperglycemia causes the abnormal termination of individual insulin release events principally by inhibiting glucose signaling.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Animales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Cartilla de ADN , Exocitosis , Genes Reporteros , Concentración de Iones de Hidrógeno , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Microscopía Confocal , Neuropéptido Y/farmacología , Proinsulina/análisis , Precursores de Proteínas/análisis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinaptotagminas/genética
5.
Diabetes ; 53 Suppl 3: S84-91, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561928

RESUMEN

Accumulation of triglyceride in islets may contribute to the loss of glucose-stimulated insulin secretion (GSIS) in some forms of type 2 diabetes (Diraison et al., Biochem J 373:769-778, 2004). Here, we use adenoviral vectors and oligonucleotide microarrays to determine the effects of the forced expression of SREBP1c on the gene expression profile of rat islets. Sterol regulatory element binding protein-1c (SREBP1c) overexpression led to highly significant (P <0.1 with respect to null adenovirus) changes in the expression of 1,238 genes or expressed sequence tags, of which 1,180 (95.3%) were upregulated. By contrast, overexpression of constitutively active AMP-activated protein kinase (AMPK), expected to promote lipolysis, altered the expression of 752 genes, of which 702 (93%) were upregulated. To identify specific targets for SREBP1c or AMPK, we eliminated messages that were 1) affected in the same direction by the expression of either protein, 2) changed by less than twofold, or 3) failed a positive false discovery test; 206 SREBP1c-regulated genes (195; 95% upregulated) and 48 AMPK-regulated genes (33; 69% upregulated) remained. As expected, SREBP1c-induced genes included those involved in cholesterol (6), fatty acid (3), and eicosanoid synthesis. Interestingly, somatostatin receptor (sstr1) expression was increased by SREBP1c, whereas AMPK induced the expression of peptide YY, the early endocrine pancreas marker.


Asunto(s)
Adenilato Quinasa/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Islotes Pancreáticos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/metabolismo , Adenoviridae , Adenilato Quinasa/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Leucina Zippers , Masculino , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Transcripción/genética , Transcripción Genética , Transfección
6.
Cell Metab ; 12(5): 545-52, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21035764

RESUMEN

Blood glucose levels are tightly controlled, a process thought to be orchestrated primarily by peripheral mechanisms (insulin secretion by ß cells, and insulin action on muscle, fat, and liver). The brain also plays an important, albeit less well-defined role. Subsets of neurons in the brain are excited by glucose; in many cases this involves ATP-mediated closure of K(ATP) channels. To understand the relevance of this, we are manipulating glucose sensing within glucose-excited neurons. In the present study, we demonstrate that glucose excitation of MCH-expressing neurons in the lateral hypothalamus is mediated by K(ATP) channels and is negatively regulated by UCP2 (a mitochondrial protein that reduces ATP production), and that glucose sensing by MCH neurons plays an important role in regulating glucose homeostasis. Combined, the glucose-excited neurons are likely to play key, previously unexpected roles in regulating blood glucose.


Asunto(s)
Glucosa/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/citología , Canales Iónicos/metabolismo , Canales KATP/metabolismo , Melaninas/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Células Cultivadas , Expresión Génica , Canales Iónicos/genética , Canales KATP/genética , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Mutación , Proteína Desacopladora 2
7.
Am J Hum Genet ; 81(3): 467-74, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17701893

RESUMEN

Exercise-induced hyperinsulinism (EIHI) is a dominantly inherited hypoglycemic disorder characterized by inappropriate insulin secretion during anaerobic exercise or on pyruvate load. We aimed to identify the molecular basis of this novel disorder of beta -cell regulation. EIHI mapped to chromosome 1 (LOD score 3.6) in a genome scan performed for two families with 10 EIHI-affected patients. Mutational analysis of the promoter of the SLC16A1 gene, which encodes monocarboxylate transporter 1 (MCT1), located under the linkage peak, revealed changes in all 13 identified patients with EIHI. Patient fibroblasts displayed abnormally high SLC16A1 transcript levels, although monocarboxylate transport activities were not changed in these cells, reflecting additional posttranscriptional control of MCT1 levels in extrapancreatic tissues. By contrast, when examined in beta cells, either of two SLC16A1 mutations identified in separate pedigrees resulted in increased protein binding to the corresponding promoter elements and marked (3- or 10-fold) transcriptional stimulation of SLC16A1 promoter-reporter constructs. These studies show that promoter-activating mutations in EIHI induce SLC16A1 expression in beta cells, where this gene is not usually transcribed, permitting pyruvate uptake and pyruvate-stimulated insulin release despite ensuing hypoglycemia. These findings describe a novel disease mechanism based on the failure of cell-specific transcriptional silencing of a gene that is highly expressed in other tissues.


Asunto(s)
Ejercicio Físico , Silenciador del Gen , Hipoglucemia/genética , Células Secretoras de Insulina/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Animales , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Femenino , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Linaje , Regiones Promotoras Genéticas
8.
Am J Physiol Endocrinol Metab ; 291(5): E982-94, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16772326

RESUMEN

Accumulation of intracellular lipid may contribute to defective insulin secretion in type 2 diabetes. Although Zucker diabetic fatty (ZDF; fa/fa) rat islets are fat-laden and overexpress the lipogenic master gene, sterol regulatory element binding protein 1c (SREBP-1c), the contribution of SREBP-1c to the secretory defects observed in this model remains unclear. Here we compare the gene expression profile of lean control (fa/+) and ZDF rat islets in the absence or presence of dominant-negative SREBP-1c (SREBP-1c DN). ZDF islets displayed elevated basal insulin secretion at 3 mmol/l glucose but a severely depressed response to 17 mmol/l glucose. While SREBP-1c DN reduced basal insulin secretion from ZDF islets, glucose-stimulated insulin secretion was not improved. Of 57 genes differentially regulated in ZDF islets and implicated in glucose metabolism, vesicle trafficking, ion fluxes, and/or exocytosis, 21 were upregulated and 5 were suppressed by SREBP-1c DN. Genes underrepresented in ZDF islets were either unaffected (Glut-2, Kir6.2, Rab3), stimulated (voltage-dependent Ca(2+) channel subunit alpha1D, CPT2, SUR2, rab9, syt13), or inhibited (syntaxin 7, secretogranin-2) by SREBP-1c inhibition. Correspondingly, SREBP-1c DN largely corrected decreases in the expression of the transcription factors Pdx-1 and MafA but did not affect the abnormalities in Pax6, Arx, hepatic nuclear factor-1alpha (HNF1alpha), HNF3beta/Forkhead box-a2 (Foxa2), inducible cyclic AMP early repressor (ICER), or transcription factor 7-like 2 (TCF7L2) expression observed in ZDF islets. We conclude that upregulation of SREBP-1c and mild increases in triglyceride content do not explain defective glucose-stimulated insulin secretion from ZDF rats. However, overexpression of SREBP-1c may contribute to enhanced basal insulin secretion in this model.


Asunto(s)
Perfilación de la Expresión Génica , Insulina/sangre , Islotes Pancreáticos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Calcio/metabolismo , Insulina/metabolismo , Secreción de Insulina , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Zucker , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
9.
Am J Physiol Endocrinol Metab ; 287(3): E390-404, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15126236

RESUMEN

Peroxisome proliferator-activated receptor-gamma (PPARgamma) serves as a target for the thiazolidinedione class of antidiabetic drugs and is an important regulator of adipose tissue differentiation. By contrast, the principal target genes for PPARgamma in the pancreatic islet and the impact of their induction on insulin secretion are largely undefined. Here, we show that mRNAs encoding both isoforms of rodent PPARgamma, gamma1 and gamma2, are expressed in primary rat islets and are upregulated by overexpresssion of the lipogenic transcription factor sterol response element-binding protein 1c. Unexpectedly, however, oligonucleotide microarray analysis demonstrates that graded activation of PPARgamma achieved with 1) the thiazolidinedione GW-347845, 2) transduction with adenoviral PPARgamma1, or 3) a combination of both treatments progressively enhances the expression of genes involved in fatty acid oxidation and transport. Moreover, maximal activation of PPARgamma1 reduces islet triglyceride levels and enhances the oxidation of exogenous palmitate while decreasing glucose oxidation, cellular ATP content, and glucose-, but not depolarization-stimulated, insulin secretion. We conclude that, in the context of the pancreatic islet, the principal response to PPARgamma expression and activation is the activation of genes involved in the disposal, rather than the synthesis, of fatty acids. Although fatty acid oxidation may have beneficial effects on beta-cell function in the longer term by countering beta-cell "lipotoxicity," the acute response to this metabolic shift is a marked inhibition of insulin secretion.


Asunto(s)
Perfilación de la Expresión Génica , Expresión Génica/fisiología , Islotes Pancreáticos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Cloruro de Potasio/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA