Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695000

RESUMEN

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células Progenitoras Linfoides/fisiología , Células Progenitoras Mieloides/fisiología , Receptores Notch/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Feto , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
2.
Dev Biol ; 501: 92-103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353106

RESUMEN

During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.


Asunto(s)
Células Madre , Pez Cebra , Animales , Ratones , Diferenciación Celular , Hematopoyesis/genética , Histona Demetilasas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344248

RESUMEN

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Asunto(s)
Linfocitos B/citología , Linaje de la Célula/inmunología , Células Progenitoras Linfoides/citología , Células Mieloides/citología , Células Precursoras de Linfocitos B/citología , Linfocitos T/citología , Animales , Separación Celular , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Timo/citología
4.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341028

RESUMEN

Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.


Asunto(s)
Cicatriz/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Corazón/fisiopatología , Miocardio/patología , Regeneración , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Anexina A2/metabolismo , Proliferación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Endocardio/patología , Regulación del Desarrollo de la Expresión Génica , Músculo Liso/metabolismo , Mutación/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Cadenas Pesadas de Miosina/metabolismo , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/genética
5.
IUBMB Life ; 72(1): 39-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778014

RESUMEN

GATA factors play central roles in the programming of blood and cardiac cells during embryonic development. Using the experimentally accessible Xenopus and zebrafish models, we report observations regarding the roles of GATA-2 in the development of blood stem cells and GATA-4, -5, and -6 in cardiac development. We show that blood stem cells develop from the dorsal lateral plate mesoderm and GATA-2 is required at multiple stages. Firstly, GATA-2 is required to make the cells responsive to VEGF-A signalling by driving the synthesis of its receptor, FLK-1/KDR. This leads to differentiation into the endothelial cells that form the dorsal aorta. GATA-2 is again required for the endothelial-to-haematopoietic transition that takes place later in the floor of the dorsal aorta. GATA-2 expression is dependent on BMP signalling for each of these inputs into blood stem cell programming. GATA-4, -5, and -6 work together to ensure the specification of cardiac cells during development. We have demonstrated redundancy within the family and also some evolution of the functions of the different family members. Interestingly, one of the features that varies in evolution is the timing of expression relative to other key regulators such as Nkx2.5 and BMP. We show that the GATA factors, Nkx2.5 and BMP regulate each other and it would appear that what is critical is the mutually supportive network of expression rather than the order of expression of each of the component genes. In Xenopus and zebrafish, the cardiac mesoderm is adjacent to an anterior population of cells giving rise to blood and endothelium. This population is not present in mammals and we have shown that, like the cardiac population, the blood and endothelial precursors require GATA-4, -5, and -6 for their development. Later, blood-specific or cardiac-specific regulators determine the ultimate fate of the cells, and we show that these regulators act cross-antagonistically. Fibroblast growth factor (FGF) signalling drives the cardiac fate, and we propose that the anterior extension of the FGF signalling field during evolution led to the recruitment of the blood and endothelial precursors into the heart field ultimately resulting in a larger four chambered heart. Zebrafish are able to successfully regenerate their hearts after injury. To understand the pathways involved, with a view to determining why humans cannot do this, we profiled gene expression in the cardiomyocytes before and after injury, and compared those proximal to the injury with those more distal. We were able to identify an enhancement of the expression of regulators of the canonical Wnt pathway proximal to the injury, suggesting that changes in Wnt signalling are responsible for the repair response to injury.


Asunto(s)
Sangre/metabolismo , Diferenciación Celular , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/citología , Animales , Factores de Transcripción GATA/genética , Humanos , Miocitos Cardíacos/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(23): 5814-5821, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584091

RESUMEN

Hematopoietic stem cells (HSCs) that sustain lifelong blood production are created during embryogenesis. They emerge from a specialized endothelial population, termed hemogenic endothelium (HE), located in the ventral wall of the dorsal aorta (DA). In Xenopus, we have been studying the gene regulatory networks (GRNs) required for the formation of HSCs, and critically found that the hemogenic potential is defined at an earlier time point when precursors to the DA express hematopoietic as well as endothelial genes, in the definitive hemangioblasts (DHs). The GRN for DH programming has been constructed and, here, we show that bone morphogenetic protein (BMP) signaling is essential for the initiation of this GRN. BMP2, -4, and -7 are the principal ligands expressed in the lineage forming the HE. To investigate the requirement and timing of all BMP signaling in HSC ontogeny, we have used a transgenic line, which inducibly expresses an inhibitor of BMP signaling, Noggin, as well as a chemical inhibitor of BMP receptors, DMH1, and described the inputs from BMP signaling into the DH GRN and the HE, as well as into primitive hematopoiesis. BMP signaling is required in at least three points in DH programming: first to initiate the DH GRN through gata2 expression, then for kdr expression to enable the DH to respond to vascular endothelial growth factor A (VEGFA) ligand from the somites, and finally for gata2 expression in the DA, but is dispensable for HE specification after hemangioblasts have been formed.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/genética , Linaje de la Célula , Redes Reguladoras de Genes , Células Madre Hematopoyéticas/citología , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Xenopus laevis
7.
PLoS Comput Biol ; 14(8): e1006077, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157169

RESUMEN

The precise anatomical location of gene expression is an essential component of the study of gene function. For most model organisms this task is usually undertaken via visual inspection of gene expression images by interested researchers. Computational analysis of gene expression has been developed in several model organisms, notably in Drosophila which exhibits a uniform shape and outline in the early stages of development. Here we address the challenge of computational analysis of gene expression in Xenopus, where the range of developmental stages of interest encompasses a wide range of embryo size and shape. Embryos may have different orientation across images, and, in addition, embryos have a pigmented epidermis that can mask or confuse underlying gene expression. Here we report the development of a set of computational tools capable of processing large image sets with variable characteristics. These tools efficiently separate the Xenopus embryo from the background, separately identify both histochemically stained and naturally pigmented regions within the embryo, and can sort images from the same gene and developmental stage according to similarity of gene expression patterns without information about relative orientation. We tested these methods on a large, but highly redundant, collection of 33,289 in situ hybridization images, allowing us to select representative images of expression patterns at different embryo orientations. This has allowed us to put a much smaller subset of these images into the public domain in an effective manner. The 'isimage' module and the scripts developed are implemented in Python and freely available on https://pypi.python.org/pypi/isimage/.


Asunto(s)
Biología Computacional/métodos , Curaduría de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Embrión no Mamífero/metabolismo , Expresión Génica , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ/métodos , Hibridación Fluorescente in Situ/métodos , Programas Informáticos , Transcriptoma , Xenopus laevis/embriología
8.
PLoS Biol ; 13(2): e1002051, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25665164

RESUMEN

As some of the most widely utilised intercellular signalling molecules, transforming growth factor ß (TGFß) superfamily members play critical roles in normal development and become disrupted in human disease. Establishing appropriate levels of TGFß signalling involves positive and negative feedback, which are coupled and driven by the same signal transduction components (R-Smad transcription factor complexes), but whether and how the regulation of the two can be distinguished are unknown. Genome-wide comparison of published ChIP-seq datasets suggests that LIM domain binding proteins (Ldbs) co-localise with R-Smads at a substantial subset of R-Smad target genes including the locus of inhibitory Smad7 (I-Smad7), which mediates negative feedback for TGFß signalling. We present evidence suggesting that zebrafish Ldb2a binds and directly activates the I-Smad7 gene, whereas it binds and represses the ligand gene, Squint (Sqt), which drives positive feedback. Thus, the fine tuning of TGFß signalling derives from positive and negative control by Ldb2a. Expression of ldb2a is itself activated by TGFß signals, suggesting potential feed-forward loops that might delay the negative input of Ldb2a to the positive feedback, as well as the positive input of Ldb2a to the negative feedback. In this way, precise gene expression control by Ldb2a enables an initial build-up of signalling via a fully active positive feedback in the absence of buffering by the negative feedback. In Ldb2a-deficient zebrafish embryos, homeostasis of TGFß signalling is perturbed and signalling is stably enhanced, giving rise to excess mesoderm and endoderm, an effect that can be rescued by reducing signalling by the TGFß family members, Nodal and BMP. Thus, Ldb2a is critical to the homeostatic control of TGFß signalling and thereby embryonic patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Retroalimentación Fisiológica , Proteínas con Dominio LIM/genética , Ligandos de Señalización Nodal/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Secuencia de Bases , Embrión no Mamífero , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas con Dominio LIM/antagonistas & inhibidores , Proteínas con Dominio LIM/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Microinyecciones , Datos de Secuencia Molecular , Morfolinos/genética , Morfolinos/metabolismo , Ligandos de Señalización Nodal/genética , Alineación de Secuencia , Transducción de Señal , Proteína smad7/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/deficiencia
9.
Nucleic Acids Res ; 44(14): 6693-706, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27084945

RESUMEN

DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species.


Asunto(s)
Secuencia Conservada/genética , Islas de CpG/genética , Metilación de ADN/genética , ADN/genética , Evolución Molecular , Animales , Línea Celular , Cromosomas Humanos Par 21/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo , Vertebrados/genética
10.
Development ; 141(12): 2429-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24917499

RESUMEN

A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.


Asunto(s)
Ambystoma mexicanum/embriología , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Mesodermo/citología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular , Proteínas Fetales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hibridación in Situ , Sistema de Señalización de MAP Quinasas , Células Madre Pluripotentes/citología , Transducción de Señal , Procesos Estocásticos , Proteínas de Dominio T Box/metabolismo , Xenopus
11.
Development ; 140(12): 2632-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23637333

RESUMEN

The first haematopoietic stem cells share a common origin with the dorsal aorta and derive from putative adult haemangioblasts in the dorsal lateral plate (DLP) mesoderm. Here we show that the transcription factor (TF) stem cell leukaemia (Scl/Tal1) is crucial for development of these adult haemangioblasts in Xenopus and establish the regulatory cascade controlling its expression. We show that VEGFA produced in the somites is required to initiate adult haemangioblast programming in the adjacent DLP by establishing endogenous VEGFA signalling. This response depends on expression of the VEGF receptor Flk1, driven by Fli1 and Gata2. Scl activation requires synergy between this VEGFA-controlled pathway and a VEGFA-independent pathway controlled by Fli1, Gata2 and Etv2/Etsrp/ER71, which also drives expression of the Scl partner Lmo2. Thus, the two ETS factors Fli1 and Etv6, which drives the VEGFA expression in both somites and the DLP, sit at the top of the adult haemangioblast gene regulatory network (GRN). Furthermore, Gata2 is initially activated by Fli1 but later maintained by another ETS factor, Etv2. We also establish that Flk1 and Etv2 act independently in the two pathways to Scl activation. Thus, detailed temporal, epistatic measurements of key TFs and VEGFA plus its receptor have enabled us to build a Xenopus adult haemangioblast GRN.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hemangioblastos/citología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Western Blotting , Linaje de la Célula , Clonación Molecular , Proteínas de Unión al ADN/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Redes Reguladoras de Genes , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Morfolinos/administración & dosificación , Morfolinos/farmacología , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Somitos/citología , Somitos/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/sangre , Proteína ETS de Variante de Translocación 6
12.
Proc Natl Acad Sci U S A ; 110(29): 11893-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818617

RESUMEN

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Asunto(s)
Arterias/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Pez Cebra
13.
EMBO J ; 30(6): 1093-103, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21336259

RESUMEN

Lineage fate decisions underpin much of development as well as tissue homeostasis in the adult. A mechanistic paradigm for such decisions is the erythroid versus myeloid fate decision controlled by cross-antagonism between gata1 and pu.1 transcription factors. In this study, we have systematically tested this paradigm in blood-producing populations in zebrafish embryos, including the haematopoietic stem cells (HSCs), and found that it takes a different form in each population. In particular, gata1 activity varies from autostimulation to autorepression. In addition, we have added a third member to this regulatory kernel, tif1γ (transcription intermediate factor-1γ). We show that tif1γ modulates the erythroid versus myeloid fate outcomes from HSCs by differentially controlling the levels of gata1 and pu.1. By contrast, tif1γ positively regulates both gata1 and pu.1 in primitive erythroid and prodefinitive erythromyeloid progenitors. We therefore conclude that the gata1/pu.1 paradigm for lineage decisions takes different forms in different cellular contexts and is modulated by tif1γ.


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Embrión no Mamífero , Células Madre Hematopoyéticas/fisiología
14.
Blood ; 122(3): 367-75, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23591790

RESUMEN

Reprogramming of somatic cells to desired cell types holds great promise in regenerative medicine. However, production of transplantable hematopoietic stem cells (HSCs) in vitro by defined factors has not yet been achieved. Therefore, it is critical to fully understand the molecular mechanisms of HSC development in vivo. Here, we show that Fev, an ETS transcription factor, is a pivotal regulator of HSC development in vertebrates. In fev-deficient zebrafish embryos, the first definitive HSC population was compromised and fewer T cells were found in the thymus. Genetic and chemical analyses support a mechanism whereby Fev regulates HSC through direct regulation of ERK signaling. Blastula transplant assay demonstrates that Fev regulation of HSC development is cell autonomous. Experiments performed with purified cord blood show that fev is expressed and functions in primitive HSCs in humans, indicating its conserved role in higher vertebrates. Our data indicate that Fev-ERK signaling is essential for hemogenic endothelium-based HSC development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Aorta/metabolismo , Linaje de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Endotelio/metabolismo , Sangre Fetal/citología , Sangre Fetal/metabolismo , Humanos
15.
Biochim Biophys Acta ; 1830(2): 2370-4, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22705943

RESUMEN

BACKGROUND: Hematopoietic stem cells (HSCs) are a population of multipotent cells that can self-renew and differentiate into all blood lineages. HSC development must be tightly controlled from cell fate determination to self-maintenance during adulthood. This involves a panel of important developmental signaling pathways and other factors which act synergistically within the HSC population and/or in the HSC niche. Genetically conserved processes of HSC development plus many other developmental advantages make the zebrafish an ideal model organism to elucidate the regulatory mechanisms underlying HSC programming. SCOPE OF REVIEW: This review summarizes recent progress on zebrafish HSCs with particular focus on how developmental signaling controls hemogenic endothelium-derived HSC development. We also describe the interaction of different signaling pathways during these processes. MAJOR CONCLUSIONS: The hematopoietic stem cell system is a paradigm for stem cell studies. Use of the zebrafish model to study signaling regulation of HSCs in vivo has resulted in a great deal of information concerning HSC biology in vertebrates. GENERAL SIGNIFICANCE: These new findings facilitate a better understanding of molecular mechanisms of HSC programming, and will provide possible new strategies for the treatment of HSC-related hematological diseases, such as leukemia. This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Pez Cebra/embriología
16.
Angiogenesis ; 17(1): 77-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23959107

RESUMEN

Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Sulfatasas/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Arterias/embriología , Arterias/metabolismo , Efrina-B2/inmunología , Efrina-B2/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicocálix/genética , Glicocálix/metabolismo , Morfolinos/farmacología , Oligonucleótidos Antisentido/farmacología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfatasas/antagonistas & inhibidores , Sulfatasas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
17.
Development ; 138(15): 3235-45, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21750034

RESUMEN

Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Corazón/embriología , Hemangioblastos/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Proliferación Celular , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Hemangioblastos/citología , Proteína Homeótica Nkx-2.5 , Morfogénesis/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
18.
Blood ; 120(25): 5063-72, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23086751

RESUMEN

Delta-like 4 (DLL4), a membrane-bound ligand belonging to the Notch signaling family, plays a fundamental role in vascular development and angiogenesis. We identified a conserved microRNA family, miR-30, which targets DLL4. Overexpression of miR-30b in endothelial cells led to increased vessel number and length in an in vitro model of sprouting angiogenesis. Microinjection of miR-30 mimics into zebrafish embryos resulted in suppression of dll4 and subsequent excessive sprouting of intersegmental vessels and reduction in dorsal aorta diameter. Use of a target protector against the miR-30 site within the dll4 3'UTR up-regulated dll4 and synergized with Vegfa signaling knockdown to inhibit angiogenesis. Furthermore, restoration of miR-30b or miR-30c expression during Kaposi sarcoma herpesvirus (KSHV) infection attenuated viral induction of DLL4. Together these results demonstrate that the highly conserved molecular targeting of DLL4 by the miR-30 family regulates angiogenesis.


Asunto(s)
Células Endoteliales/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neovascularización Fisiológica , Animales , Secuencia de Bases , Línea Celular , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/virología , Regulación del Desarrollo de la Expresión Génica , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología
19.
Blood ; 120(2): 477-88, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22668851

RESUMEN

Multiple signaling pathways control the specification of endothelial cells (ECs) to become arteries or veins during vertebrate embryogenesis. Current models propose that a cascade of Hedgehog (Hh), vascular endothelial growth factor (VEGF), and Notch signaling acts instructively on ECs to control the choice between arterial or venous fate. Differences in the phenotypes induced by Hh, VEGF, or Notch inhibition suggest that not all of the effects of Hh on arteriovenous specification are mediated by VEGF. We establish that full derepression of the Hh pathway in ptc1;ptc2 mutants converts the posterior cardinal vein into a second arterial vessel that manifests intact arterial gene expression, intersegmental vessel sprouting, and HSC gene expression. Importantly, although VEGF was thought to be absolutely essential for arterial fates, we find that normal and ectopic arterial differentiation can occur without VEGF signaling in ptc1;ptc2 mutants. Furthermore, Hh is able to bypass VEGF to induce arterial differentiation in ECs via the calcitonin receptor-like receptor, thus revealing a surprising complexity in the interplay between Hh and VEGF signaling during arteriovenous specification. Finally, our experiments establish a dual function of Hh during induction of runx1(+) HSCs.


Asunto(s)
Proteína Similar al Receptor de Calcitonina/metabolismo , Proteínas Hedgehog/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Arterias/embriología , Arterias/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana , Mutación , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Pez Cebra/genética
20.
Nucleic Acids Res ; 40(4): e32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156374

RESUMEN

Across vertebrate genomes methylation of cytosine residues within the context of CpG dinucleotides is a pervasive epigenetic mark that can impact gene expression and has been implicated in various developmental and disease-associated processes. Several biochemical approaches exist to profile DNA methylation, but recently an alternative approach based on profiling non-methylated CpGs was developed. This technique, called CxxC affinity purification (CAP), uses a ZF-CxxC (CxxC) domain to specifically capture DNA containing clusters of non-methylated CpGs. Here we describe a new CAP approach, called biotinylated CAP (Bio-CAP), which eliminates the requirement for specialized equipment while dramatically improving and simplifying the CxxC-based DNA affinity purification. Importantly, this approach isolates non-methylated DNA in a manner that is directly proportional to the density of non-methylated CpGs, and discriminates non-methylated CpGs from both methylated and hydroxymethylated CpGs. Unlike conventional CAP, Bio-CAP can be applied to nanogram quantities of genomic DNA and in a magnetic format is amenable to efficient parallel processing of samples. Furthermore, Bio-CAP can be applied to genome-wide profiling of non-methylated DNA with relatively small amounts of input material. Therefore, Bio-CAP is a simple and streamlined approach for characterizing regions of the non-methylated DNA, whether at specific target regions or genome wide.


Asunto(s)
Cromatografía de Afinidad/métodos , Islas de CpG , Metilación de ADN , Biotinilación , ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA