Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511593

RESUMEN

The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Pruebas Genéticas
2.
Hum Genet ; 137(10): 817-829, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30276538

RESUMEN

We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Meiosis , Reparación del ADN por Recombinación , Translocación Genética/genética , Femenino , Humanos , Masculino
3.
Clin Chem ; 62(6): 848-55, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27117469

RESUMEN

BACKGROUND: There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). METHODS: We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. RESULTS: Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%-100%) cases of trisomy 21, 16/16 (95% CI, 79.4%-100%) cases of trisomy 18, 5/5 (95% CI, 47.8%-100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%-100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%-100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. CONCLUSIONS: The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT.


Asunto(s)
Trastornos de los Cromosomas/genética , ADN/genética , Síndrome de Down/genética , Feto/metabolismo , Diagnóstico Prenatal , Análisis de Secuencia de ADN , Análisis para Determinación del Sexo/métodos , Trisomía/genética , Trastornos de los Cromosomas/sangre , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 18/genética , ADN/sangre , Síndrome de Down/sangre , Femenino , Humanos , Embarazo , Síndrome de la Trisomía 13 , Síndrome de la Trisomía 18
4.
Genet Res (Camb) ; 98: e15, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834155

RESUMEN

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.


Asunto(s)
Biomarcadores/análisis , Metilación de ADN , ADN/genética , Enfermedades Fetales/diagnóstico , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Complicaciones del Embarazo/diagnóstico , Muestra de la Vellosidad Coriónica , ADN/sangre , Epigénesis Genética , Femenino , Enfermedades Fetales/sangre , Enfermedades Fetales/genética , Feto/metabolismo , Humanos , Inmunoprecipitación , Pruebas de Detección del Suero Materno , Placenta/metabolismo , Embarazo , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Primer Trimestre del Embarazo
5.
Cytogenet Genome Res ; 144(3): 169-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25573336

RESUMEN

We describe 2 Ukrainian families with unbalanced reciprocal translocations (RTs) involving the distal part of chromosome 10q. In both families, the fathers were healthy carriers of the RT. Two affected patients from the first family had an ∼2.3-Mb loss at 10q26.3 and an ∼25-Mb gain at 2q35qter, and the patient from the other family had an ∼12.5-Mb loss at 5p15.2pter and an ∼18-Mb gain at 10q25.3q26.3. We assume that intellectual disability (ID) in association with congenital anomalies observed in our patients was the result of the cumulative effect of both gains and losses of the chromosomal regions involved in each translocation. Comparison of the sizes of the deleted and duplicated segments in our families as well as in other published families with translocations affecting the distal part of 10q showed that generally deletions seem to be ∼2 times more harmful than duplications of the same size. The data obtained here may contribute to improve the diagnosis and genetic counseling of families with similar chromosomal imbalances.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Translocación Genética/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Cromosomas Humanos Par 10/genética , Femenino , Asesoramiento Genético , Humanos , Hibridación Fluorescente in Situ , Discapacidad Intelectual/etiología , Discapacidad Intelectual/patología , Masculino
6.
Hum Mol Genet ; 20(10): 1925-36, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21349920

RESUMEN

The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.


Asunto(s)
Cromosomas Humanos X/genética , Replicación del ADN/genética , Isocromosomas/genética , Secuencia de Bases , Rotura Cromosómica , Hibridación Genómica Comparativa , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Polimorfismo Genético , Recombinación Genética , Alineación de Secuencia , Secuencias Repetidas en Tándem/genética
7.
BMC Med ; 11: 56, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23445999

RESUMEN

Noninvasive prenatal diagnosis of chromosomal aneuploidies, although challenging, has been achieved through the implementation of novel methodologies such as methylated DNA immunoprecipitation and next generation sequencing technologies. Nevertheless, additional developments are required towards the interpretation of other fetal abnormalities of higher complexity, such as de novo mutations including microdeletion and microduplication syndromes as well as complex diseases. The application of next generation sequencing technologies towards fetal whole genome recovery has demonstrated great potential to achieve the above goal. In a research article published in Genome Medicine, Chen et al. presented a novel approach that allowed more robust and accurate characterization of parental alleles compared with previous studies. This was achieved through a revolutionary strategy based on the use of trios and unrelated individuals that simultaneously targets the interpretation of the fetal haplotype and phenotype in one step. It is hereby shown that the implementation of a more accurate experimental design in combination with proper analytical tools can provide robust noninvasive fetal whole genome recovery with the potential for further developments beyond the DNA level.


Asunto(s)
Aneuploidia , ADN/sangre , Diagnóstico Prenatal/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Feto/anomalías , Feto/citología , Genoma , Haplotipos , Humanos
8.
Prenat Diagn ; 33(7): 650-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23619923

RESUMEN

OBJECTIVE: The goal of this study is to evaluate the amount of free fetal DNA (ffDNA), total DNA, and 'fetal fraction' found in maternal plasma and whether these influence the enrichment ratios of differentially methylated regions (DMRs) and the correct classification of trisomy 21 using the methylated DNA immunoprecipitation-quantitative polymerase chain reaction (MeDIP-qPCR)-based noninvasive prenatal diagnostic methodology applied in peripheral blood. METHODS: Absolute quantification of ffDNA using DYS14 and total DNA using ß-globin was applied in 83 maternal plasma samples. The quantification values for all 83 samples were correlated with the enrichment ratios of all seven DMRs and D-values that were obtained from the diagnostic formula of MeDIP-qPCR method. RESULTS: Our analysis concluded that trisomy 21 samples had significantly higher ffDNA and total DNA levels compared with those of normal samples. Enrichment ratios of the majority of DMRs studied exhibited no association with ffDNA, total DNA, and 'fetal fraction', and only a small portion of DMRs exhibited moderate association. Correlation studies of ffDNA, total DNA, and fetal fraction with the diagnostic D-value showed weak to no association but without affecting the classification of trisomy 21. CONCLUSION: Overall, the variability of ffDNA and total DNA among maternal samples does not affect the correct trisomy 21 classification using MeDIP-qPCR methodology applied in peripheral blood.


Asunto(s)
Metilación de ADN , ADN/sangre , Síndrome de Down/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Síndrome de Down/genética , Femenino , Feto/química , Humanos , Inmunoprecipitación , Masculino , Embarazo , Globinas beta/análisis
9.
Adv Biol Regul ; 88: 100964, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004354

RESUMEN

Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRß and p130 deletion, and SKP2 amplification, suggesting TRß inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma. RB1 knockout mice develop several kinds of tumors, but Rb1 and SKP2 double knockout mice are healthy, suggesting that SKP2 targeted therapy may have significant effects on Rb deficient cancers with less side effects, and if successful in SCLC and retinoblastoma in vitro and in animal model, such compounds may be promising for the clinical treatment of SCLC, retinoblastoma, and variety of Rb deficient cancers. Previously our studies showed that retinoblastomas exhibit retinal cone precursor properties and depend on cone-specific thyroid hormone receptor ß2 (TRß2) and SKP2 signaling. In this study, we sought to suppress SCLC and retinoblastoma cell growth by SKP2 inhibitors as a prelude to targeted therapy in vitro and in vivo. We knocked down TRß2 and SKP2 or over-expressed p27 in SCLC and retinoblastoma cell lines to investigate SKP2 and p27 signaling alterations. The SCLC cell lines H209 as well as retinoblastoma cell lines Y79, WERI, and RB177 were treated with SKP2 inhibitor C1 at different concentrations, following which Western blotting, Immunostaining, and cell cycle kinetics studies were performed to study SKP2 and p27 expression ubiquitination, to determine impact on cell cycle regulation and growth inhibition. TRß2 knockdown in Y79, RB177 and H209 caused SKP2 downregulation and degradation, p27 up-regulation, and S phase arrest, whereas, SKP2 knockdown or p27 over-expression caused p27 accumulation and G1-S phase arrest. In the cell lines Y79, WERI, RB177, and H209 treatment with C1 caused SKP2 ubiquitination and degradation, p27 de-ubiquitination and accumulation, and cell growth arrest. SKP2 inhibitor C1 significantly suppressed retinoblastoma as well as SCLC cell growth by SKP2 degradation and p27 accumulation. In vivo study also showed inhibition of tumor growth with C1 treatment. Potential limitations of the success of such a therapeutic approach and its translational application in human primary tumors, and alternative approaches to overcome such limitations are briefly discussed for the treatment of retinoblastoma, SCLC and other RB-related cancers.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Ratones , Animales , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Línea Celular Tumoral , Ciclo Celular , Ratones Noqueados , Pulmón/patología
10.
Oncol Lett ; 25(1): 38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36589665

RESUMEN

Gliomas are the most common malignant primary brain tumors characterized by poor prognosis. The genotyping of tumors using next generation sequencing (NGS) platforms enables the identification of genetic alterations that constitute diagnostic, prognostic and predictive biomarkers. The present study investigated the molecular profile of 32 tumor samples from 32 patients with high-grade gliomas by implementing a broad 80-gene targeted NGS panel while reporting their clinicopathological characteristics and outcomes. Subsequently, 14 of 32 tumor specimens were also genotyped using a 55-gene NGS panel to validate the diagnostic accuracy and clinical utility of the extended panel. The median follow-up was 19.2 months. In total, 129 genetic alterations including 33 structural variants were identified in 38 distinct genes. Among 96 variants (single nucleotide variants and insertions and deletions), 38 were pathogenic and 58 variants of unknown clinical significance. TP53 was the most frequently mutated gene, followed by PTEN and IDH1 genes. Glioma patients with IDH1 mutant tumors were younger and had significantly longer overall survival compared to patients with wild-type IDH1 tumors. Similarly, tumors with TP53 mutations were more likely observed in younger patients with glioma. Subsequently, a comparison of mutational profiles of samples analyzed by both panels was also performed. Implementation of the comprehensive pan-cancer and the MOL panels resulted in the identification of 37 and 15 variants, respectively. Of those, 13 were common. Comprehensive pan-cancer panel identified 24 additional variants, 22 of which were located in regions that were not targeted by the MOL panel. By contrast, the MOL panel identified two additional variants. Overall, the present study demonstrated that using an extended tumor profile assay instead of a glioma-specific tumor profile panel identified additional genetic changes that may be taken into consideration as potential therapeutic targets for glioma diagnosis and molecular classification.

11.
Viruses ; 15(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37766339

RESUMEN

Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021-January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed "Deltacron", was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation-a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus's local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus's epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic's dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Chipre/epidemiología , Filogenia , COVID-19/epidemiología , Genómica , Pandemias
12.
Am J Med Genet A ; 158A(5): 1200-3, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22495914

RESUMEN

The use of high-resolution microarray technology for investigation of patients with intellectual disability and/or congenital anomalies provided the unique possibility to identify new microdeletion/microduplication syndromes and discover the dosage sensitive genes, which are implicated in the manifestation of various genetic conditions. Microduplication of the 7p22.1 region, 1.7 Mb in size, has very recently been reported, representing the smallest interstitional 7p duplication, associated with specific facial features and speech delay. We report on a patient with an even smaller 7p22.1 de novo microduplication, 1 Mb in size, detected in a 14.5-year-old patient with mild intellectual disability and similar facial dysmorphism, including macrocephaly, ocular hypertelorism, low-set ears, and other features. There are 15 RefSeq genes included in this duplication. ACTB gene is a strong candidate gene for the alteration of craniofacial development. Further cases with similar duplications will contribute to the delineation of a potential new microduplication syndrome of 7p22.1.


Asunto(s)
Cromosomas Humanos Par 7/genética , Anomalías Craneofaciales/genética , Trisomía/genética , Anomalías Múltiples , Adolescente , Humanos , Discapacidad Intelectual/genética , Análisis por Micromatrices , Síndrome
13.
Prenat Diagn ; 32(10): 996-1001, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22833530

RESUMEN

OBJECTIVE: To reevaluate the efficiency of the 12 differentially methylated regions (DMRs) used in the methylated DNA immunoprecipitation (MeDIP) real-time quantitative polymerase chain reaction (real-time qPCR) based approach, develop an improved version of the diagnostic formula and perform a larger validation study. METHODS: Twelve selected DMRs were checked for copy number variants in the Database of Genomic Variants. The DMRs located within copy number variants were excluded from the analysis. One hundred and seventy-five maternal peripheral blood samples were used to reconstruct and evaluate the new diagnostic formula and for a larger-scale blinded validation study using MeDIP real-time qPCR. RESULTS: Seven DMRs entered the final model of the prediction equation and a larger blinded validation study demonstrated 100% sensitivity and 99.2% specificity. No significant evidence for association was observed between cell free fetal DNA concentration and D value. CONCLUSION: The MeDIP real-time qPCR method for noninvasive prenatal diagnosis of trisomy 21 was confirmed and revalidated in 175 samples with satisfactory results demonstrating that it is accurate and reproducible. We are currently working towards simplification of the method to make it more robust and therefore easily, accurately, and rapidly reproduced and adopted by other laboratories. Nevertheless, larger scale validation studies are necessary before the MeDIP real-time qPCR-based method could be applied in clinical practice.


Asunto(s)
Metilación de ADN/genética , ADN/sangre , Síndrome de Down/diagnóstico , Técnicas de Inmunoadsorción , Diagnóstico Prenatal/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Síndrome de Down/genética , Femenino , Feto/química , Edad Gestacional , Humanos , Embarazo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Front Oncol ; 12: 855463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402285

RESUMEN

Introduction: The mechanisms underlying high drug resistance and relapse rates after multi-modal treatment in patients with colorectal cancer (CRC) and liver metastasis (LM) remain poorly understood. Objective: We evaluate the potential translational implications of intra-patient heterogeneity (IPH) comprising primary and matched metastatic intratumor heterogeneity (ITH) coupled with circulating tumor DNA (ctDNA) variability. Methods: A total of 122 multi-regional tumor and perioperative liquid biopsies from 18 patients were analyzed via targeted next-generation sequencing (NGS). Results: The proportion of patients with ITH were 53% and 56% in primary CRC and LM respectively, while 35% of patients harbored de novo mutations in LM indicating spatiotemporal tumor evolution and the necessity of multiregional analysis. Among the 56% of patients with alterations in liquid biopsies, de novo mutations in cfDNA were identified in 25% of patients, which were undetectable in both CRC and LM. All 17 patients with driver alterations harbored mutations targetable by molecularly targeted drugs, either approved or currently under evaluation. Conclusion: Our proof-of-concept prospective study provides initial evidence on potential clinical superiority of IPH and warrants the conduction of precision oncology trials to evaluate the clinical utility of I PH-driven matched therapy.

15.
Viruses ; 15(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36680148

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Chipre/epidemiología , Filogenia , COVID-19/epidemiología , Genómica , Pandemias
16.
Am J Med Genet A ; 155A(10): 2501-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21998857

RESUMEN

We report on a girl with developmental delay and a de novo 264 kb interstitial duplication in the region of Sotos syndrome at 5q35.3 in the immediate vicinity of critical NSD1 gene, but manifesting the phenotype, of overgrowth both prenatal stage and postnatal, macrocephaly, developmental delay, and resembling that of Sotos syndrome, rather than the recently reported syndrome of reciprocal duplication. The duplication is located right downstream from the NSD1 gene, a region which appears critical for the expression of the gene as regulatory elements might be disrupted or the expression of a not amplified critical gene might be otherwise affected by the duplicated region. Thus,in the process of evaluating identified CNVs attention should be drawn to the possible influence of chromosomal rearrangement on distant genes, which could add additional diversity to genomic disorders. Our case demonstrates that evaluation of the size of chromosomal alteration and gene content are not sufficient for assessment of CNV's pathogenicity and the context of adjacent genes should be considered.


Asunto(s)
Duplicación Cromosómica/genética , Cromosomas Humanos Par 5/genética , Fenotipo , Síndrome de Sotos/genética , Síndrome de Sotos/patología , Encéfalo/patología , Preescolar , Hibridación Genómica Comparativa , Análisis Citogenético , Femenino , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Imagen por Resonancia Magnética , Proteínas Nucleares/genética
17.
Front Genet ; 12: 693952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539735

RESUMEN

The European Society of Human Genetics (ESHG) was founded in 1967 as a professional organisation for members working in genetics in clinical practice, research and education. The Society seeks the integration of scientific research and its implementation into clinical practice and the education of specialists and the public in all areas of medical and human genetics. The Society works to do this through many approaches, including educational sessions at the annual conference; training courses in general and specialist areas of genetics; an online resource of educational materials (EuroGEMS); and a mentorship scheme. The ESHG Education Committee is implementing new approaches to expand the reach of its educational activities and portfolio. With changes in technology, appreciation of the utility of genomics in healthcare and the public's and patients' increased awareness of the role of genomics, this review will summarise how the ESHG is adapting to deliver innovative educational activity.

18.
Viruses ; 13(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207490

RESUMEN

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in an extraordinary global public health crisis. In early 2020, Cyprus, among other European countries, was affected by the SARS-CoV-2 epidemic and adopted lockdown measures in March 2020 to limit the initial outbreak on the island. In this study, we performed a comprehensive retrospective molecular epidemiological analysis (genetic, phylogenetic, phylodynamic and phylogeographic analyses) of SARS-CoV-2 isolates in Cyprus from April 2020 to January 2021, covering the first ten months of the SARS-CoV-2 infection epidemic on the island. The primary aim of this study was to assess the transmissibility of SARS-CoV-2 lineages in Cyprus. Whole SARS-CoV-2 genomic sequences were generated from 596 clinical samples (nasopharyngeal swabs) obtained from community-based diagnostic testing centers and hospitalized patients. The phylogenetic analyses revealed a total of 34 different lineages in Cyprus, with B.1.258, B.1.1.29, B.1.177, B.1.2, B.1 and B.1.1.7 (designated a Variant of Concern 202012/01, VOC) being the most prevalent lineages on the island during the study period. Phylodynamic analysis showed a highly dynamic epidemic of SARS-CoV-2 infection, with three consecutive surges characterized by specific lineages (B.1.1.29 from April to June 2020; B.1.258 from September 2020 to January 2021; and B.1.1.7 from December 2020 to January 2021). Genetic analysis of whole SARS-CoV-2 genomic sequences of the aforementioned lineages revealed the presence of mutations within the S protein (L18F, ΔH69/V70, S898F, ΔY144, S162G, A222V, N439K, N501Y, A570D, D614G, P681H, S982A and D1118H) that confer higher transmissibility and/or antibody escape (immune evasion) upon the virus. Phylogeographic analysis indicated that the majority of imports and exports were to and from the United Kingdom (UK), although many other regions/countries were identified (southeastern Asia, southern Europe, eastern Europe, Germany, Italy, Brazil, Chile, the USA, Denmark, the Czech Republic, Slovenia, Finland, Switzerland and Pakistan). Taken together, these findings demonstrate that the SARS-CoV-2 infection epidemic in Cyprus is being maintained by a continuous influx of lineages from many countries, resulting in the establishment of an ever-evolving and polyphyletic virus on the island.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/transmisión , Control de Enfermedades Transmisibles , Chipre/epidemiología , Evolución Molecular , Humanos , Mutación , Nasofaringe/virología , Filogeografía , ARN Viral/genética , Estudios Retrospectivos , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación
19.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429865

RESUMEN

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

20.
Am J Pathol ; 174(5): 1609-18, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19349366

RESUMEN

The use of epigenetic differences between maternal whole blood and fetal (placental) DNA is one of the main areas of interest for the development of noninvasive prenatal diagnosis of aneuploidies. However, the lack of detailed chromosome-wide identification of differentially methylated sites has limited the application of this approach. In this study, we describe an analysis of chromosome-wide methylation status using methylation DNA immunoprecipitation coupled with high-resolution tiling oligonucleotide array analysis specific for chromosomes 21, 18, 13, X, and Y using female whole blood and placental DNA. We identified more than 2000 regions of differential methylation between female whole blood and placental DNA on each of the chromosomes tested. A subset of the differentially methylated regions identified was validated by real-time quantitative polymerase chain reaction. Additionally, correlation of these regions with CpG islands, genes, and promoter regions was investigated. Between 56 to 83% of the regions were located within nongenic regions whereas only 1 to 11% of the regions overlapped with CpG islands; of these, up to 65% were found in promoter regions. In summary, we identified a large number of previously unreported fetal epigenetic molecular markers that have the potential to be developed into targets for noninvasive prenatal diagnosis of trisomy 21 and other common aneuploidies. In addition, we demonstrated the effectiveness of the methylation DNA immunoprecipitation approach in the enrichment of hypermethylated fetal DNA.


Asunto(s)
Aneuploidia , Biomarcadores/sangre , Metilación de ADN , ADN/genética , Feto/metabolismo , Placenta/metabolismo , Diagnóstico Prenatal/métodos , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 21/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Islas de CpG , ADN/análisis , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoprecipitación , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA