Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910204

RESUMEN

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Asunto(s)
Movimiento Celular , Queratinocitos , Proteína de Unión al GTP cdc42 , Proteínas de Unión al GTP rho , Proteína de Unión al GTP cdc42/metabolismo , Fibroblastos/metabolismo , Queratinocitos/fisiología , Miosinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Humanos
2.
iScience ; 25(6): 104355, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601920

RESUMEN

The unique threonine protease Tasp1 impacts not only ordered development and cell proliferation but also pathologies. However, its substrates and the underlying molecular mechanisms remain poorly understood. We demonstrate that the unconventional Myo1f is a Tasp1 substrate and unravel the physiological relevance of this proteolysis. We classify Myo1f as a nucleo-cytoplasmic shuttle protein, allowing its unhindered processing by nuclear Tasp1 and an association with chromatin. Moreover, we show that Myo1f induces filopodia resulting in increased cellular adhesion and migration. Importantly, filopodia formation was antagonized by Tasp1-mediated proteolysis, supported by an inverse correlation between Myo1f concentration and Tasp1 expression level. The Tasp1/Myo1f-axis might be relevant in human hematopoiesis as reduced Tasp1 expression coincided with increased Myo1f concentrations and filopodia in macrophages compared to monocytes and vice versa. In sum, we discovered Tasp1-mediated proteolysis of Myo1f as a mechanism to fine-tune filopodia formation, inter alia relevant for cells of the immune system.

3.
J Cell Biol ; 216(12): 4271-4285, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29055010

RESUMEN

Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mecanotransducción Celular , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina/ultraestructura , Actomiosina/genética , Actomiosina/metabolismo , Fenómenos Biomecánicos , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HeLa , Humanos , Microtúbulos/ultraestructura , Miosinas/genética , Osteoblastos , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Unión al GTP rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA