Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Divers ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773015

RESUMEN

Breast cancer (BC) is the second-leading cause of cancer after lung cancer. The disease has affected millions of people and resulted in many deaths. In the metastasis of breast cancer cells, Topoisomerase IIα plays a vital role. Therefore, this investigation aims to identify potential flavonoid compounds against BC by inhibiting this enzyme at an early stage. Based on previous studies, we selected and screened several plant-derived flavonoid compounds with potential anti-breast cancer activity using PyRx 0.8 and Schrodinger applications for preliminary molecular docking: the highest docking scores of Myricetin (-11.6 kcal/mol) and Quercetin (-10.0 kcal/mol). Next, we evaluated the top four compounds on the Way2Drug server to complete the cytotoxicity evaluation, which demonstrated anti-cancer and anti-breast cancer activity in various cell lines. According to pharmacokinetics studies, four compounds exhibited outstanding values and functioned similar to drug-like molecules. Moreover, Myricetin, Quercetin, and Morin displayed the highest number of hydrogen bonds, with the corresponding receptor forming residues asn120, thr147, and lys168. The protein-ligand complexes were validated using the Desmond simulator, and their data were compared to the anti-breast cancer drug Doxorubicin. In the simulation analysis, various parameters were evaluated, including RMSD, RMSF, Rg, SASA, MolSA, PSA, and hydrogen bond interaction. Finally, validated our dynamic simulation result with MM-GBSA operation, and Myricetin and Quercetin had the greatest score of -72.74344651, -66.66771823 kcal/mol, which is outstanding than the control drug. Hence, the computational research approach determined that Myricetin, Quercetin, and Morin could be industrially developed for the alternative treatment of breast cancer following additional confirmation from animal and cell line studies.

2.
Mol Pharmacol ; 103(3): 145-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36414374

RESUMEN

Despite the progress made in the development of new antiepileptic drugs (AEDs), poor response to them is a rising concern in epilepsy treatment. Of several hypotheses explaining AED treatment failure, the most promising theory is the overexpression of multidrug transporters belonging to ATP-binding cassette (ABC) transporter family at blood-brain barrier. Previous data show that AEDs themselves can induce these transporters, in turn affecting their own brain bioavailability. Presently, this induction and the underlying regulatory mechanism involved at human blood-brain barrier is not well elucidated. Herein, we sought to explore the effect of most prescribed first- and second-line AEDs on multidrug transporters in human cerebral microvascular endothelial cells, hCMEC/D3. Our work demonstrated that exposure of these cells to valproic acid (VPA) induced mRNA, protein, and functional activity of breast cancer resistance protein (BCRP/ABCG2). On examining the substrate interaction status of AEDs with BCRP, VPA, phenytoin, and lamotrigine were found to be potential BCRP substrates. Furthermore, we observed that siRNA-mediated knockdown of peroxisome proliferator-activated receptor alpha (PPARα) or use of PPARα antagonist, resulted in attenuation of VPA-induced BCRP expression and transporter activity. VPA was found to increase PPARα expression and trigger its translocation from cytoplasm to nucleus. Findings from chromatin immunoprecipitation and luciferase assays showed that VPA enhances the binding of PPARα to its response element in the ABCG2 promoter, resulting in elevated ABCG2 transcriptional activity. Taken together, these in vitro findings highlight PPARα as the potential molecular target to prevent VPA-mediated BCRP induction, which may have important implications in VPA pharmacoresistance. SIGNIFICANCE STATEMENT: Induction of multidrug transporters at blood-brain barrier can largely affect the bioavailability of the substrate antiepileptic drugs in the brains of patients with epilepsy, thus affecting their therapeutic efficacy. The present study reports a mechanistic pathway of breast cancer resistance protein (BCRP/ABCG2) upregulation by valproic acid in human brain endothelial cells via peroxisome proliferator-activated receptor alpha involvement, thereby providing a potential strategy to prevent valproic acid pharmacoresistance in epilepsy.


Asunto(s)
Neoplasias de la Mama , Epilepsia , Humanos , Femenino , PPAR alfa/metabolismo , Ácido Valproico/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Anticonvulsivantes/farmacología , Regulación hacia Arriba , Células Endoteliales/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Neoplasias de la Mama/metabolismo
3.
Plant Physiol ; 188(3): 1617-1631, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850203

RESUMEN

AGAMOUS-Like 18 (AGL18) is a MADS domain transcription factor (TF) that is structurally related to AGL15. Here we show that, like AGL15, AGL18 can promote somatic embryogenesis (SE) when ectopically expressed in Arabidopsis (Arabidopsis thaliana). Based on loss-of-function mutants, AGL15 and AGL18 have redundant functions in developmental processes such as SE. To understand the nature of this redundancy, we undertook a number of studies to look at the interaction between these factors. We studied the genome-wide direct targets of AGL18 to characterize its roles at the molecular level using chromatin immunoprecipitation (ChIP)-SEQ combined with RNA-SEQ. The results demonstrated that AGL18 binds to thousands of sites in the genome. Comparison of ChIP-SEQ data for AGL15 and AGL18 revealed substantial numbers of genes bound by both AGL15 and AGL18, but there were also differences. Gene ontology analysis revealed that target genes were enriched for seed, embryo, and reproductive development as well as hormone and stress responses. The results also demonstrated that AGL15 and AGL18 interact in a complex regulatory loop, where AGL15 inhibited transcript accumulation of AGL18, while AGL18 increased AGL15 transcript accumulation. Co-immunoprecipitation revealed an interaction between AGL18 and AGL15 in somatic embryo tissue. The binding and expression analyses revealed a complex crosstalk and interactions among embryo TFs and their target genes. In addition, our study also revealed that phosphorylation of AGL18 and AGL15 was crucial for the promotion of SE.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Técnicas de Embriogénesis Somática de Plantas
4.
J Org Chem ; 88(24): 16985-16996, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38048479

RESUMEN

An operationally simple and efficient protocol for copper(II)-mediated, picolinamido-directed C8-H sulfonamidation of 1-naphthylamine derivatives with various sulfonamides has been developed. Remarkably, this cross-dehydrogenative C-H/H-N coupling reaction exhibits a broad substrate scope with excellent functional group tolerance, is scalable, and enables an expeditious route to a library of unsymmetrical N-arylated sulfonamides in good to excellent yields with exclusive site selectivity.

5.
Mol Divers ; 27(2): 857-871, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35639226

RESUMEN

SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Péptido Hidrolasas/metabolismo
6.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35821161

RESUMEN

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Simulación del Acoplamiento Molecular , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Hepatitis C/metabolismo , Hepatocitos/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacología
7.
Phytother Res ; 37(12): 5724-5754, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786304

RESUMEN

Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.


Asunto(s)
Berberina , Curcumina , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Berberina/uso terapéutico , Línea Celular Tumoral
8.
Cell Mol Life Sci ; 78(21-22): 6887-6939, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34586444

RESUMEN

The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/ß-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Animales , Humanos , Proteínas de Neoplasias/genética , Polimorfismo Genético/genética , Transducción de Señal/genética
9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499403

RESUMEN

AGAMOUS-like 15 (AGL15) is a member of the MADS-domain transcription factor (TF) family. MADS proteins are named for a conserved domain that was originally from an acronym derived from genes expressed in a variety of eukaryotes (MCM1-AGAMOUS-DEFICIENS-SERUM RESPONSE FACTOR). In plants, this family has expanded greatly, with more than one-hundred members generally found in dicots, and the proteins encoded by these genes have often been associated with developmental identity. AGL15 transcript and protein accumulate primarily in embryos and has been found to promote an important process called plant regeneration via somatic embryogenesis (SE). To understand how this TF performs this function, we have previously used microarray technologies to assess direct and indirect responsive targets of this TF. We have now revisited this question using next generation sequencing (NGS) to both characterize in vivo binding sites for AGL15 as well as response to the accumulation of AGL15. We compared these data to the prior microarray results to evaluate the different platforms. The new NGS data brought to light an interaction with brassinosteroid (BR) hormone signaling that was "missed" in prior Gene Ontology analysis from the microarray studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant Physiol ; 182(2): 840-856, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31727678

RESUMEN

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene clusters regulate the biosynthesis of diverse specialized metabolites, including steroidal glycoalkaloids in tomato (Solanum lycopersicum) and potato (Solanum tuberosum), nicotine in tobacco (Nicotiana tabacum), and pharmaceutically valuable terpenoid indole alkaloids in Madagascar periwinkle (Catharanthus roseus). However, the regulatory relationships between individual AP2/ERF genes within the cluster remain unexplored. We uncovered intracluster regulation of the C. roseus AP2/ERF regulatory circuit, which consists of ORCA3, ORCA4, and ORCA5 ORCA3 and ORCA5 activate ORCA4 by directly binding to a GC-rich motif in the ORCA4 promoter. ORCA5 regulates its own expression through a positive autoregulatory loop and indirectly activates ORCA3 In determining the functional conservation of AP2/ERF clusters in other plant species, we found that GC-rich motifs are present in the promoters of analogous AP2/ERF clusters in tobacco, tomato, and potato. Intracluster regulation is evident within the tobacco NICOTINE2 (NIC2) ERF cluster. Moreover, overexpression of ORCA5 in tobacco and of NIC2 ERF189 in C. roseus hairy roots activates nicotine and terpenoid indole alkaloid pathway genes, respectively, suggesting that the AP2/ERFs are functionally equivalent and are likely to be interchangeable. Elucidation of the intracluster and mutual regulation of transcription factor gene clusters advances our understanding of the underlying molecular mechanism governing regulatory gene clusters in plants.


Asunto(s)
Etilenos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Factores de Transcripción/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Catharanthus/genética , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Etilenos/farmacología , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Solanum lycopersicum/genética , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Motivos de Nucleótidos/genética , Oxilipinas/metabolismo , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Unión Proteica/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba
11.
Biochem J ; 477(19): 3743-3767, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33045058

RESUMEN

Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Semillas/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Semillas/genética
12.
Biotechnol Lett ; 43(11): 2085-2103, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34564757

RESUMEN

Plants synthesize a vast array of specialized metabolites that primarily contribute to their defense and survival under adverse conditions. Many of the specialized metabolites have therapeutic values as drugs. Biosynthesis of specialized metabolites is affected by environmental factors including light, temperature, drought, salinity, and nutrients, as well as pathogens and insects. These environmental factors trigger a myriad of changes in gene expression at the transcriptional and posttranscriptional levels. The dynamic changes in gene expression are mediated by several regulatory proteins that perceive and transduce the signals, leading to up- or down-regulation of the metabolic pathways. Exploring the environmental effects and related signal cascades is a strategy in metabolic engineering to produce valuable specialized metabolites. However, mechanistic studies on environmental factors affecting specialized metabolism are limited. The medicinal plant Catharanthus roseus (Madagascar periwinkle) is an important source of bioactive terpenoid indole alkaloids (TIAs), including the anticancer therapeutics vinblastine and vincristine. The emerging picture shows that various environmental factors significantly alter TIA accumulation by affecting the expression of regulatory and enzyme-encoding genes in the pathway. Compared to our understanding of the TIA pathway in response to the phytohormone jasmonate, the impacts of environmental factors on TIA biosynthesis are insufficiently studied and discussed. This review thus focuses on these aspects and discusses possible strategies for metabolic engineering of TIA biosynthesis. PURPOSE OF WORK: Catharanthus roseus is a rich source of bioactive terpenoid indole alkaloids (TIAs). The objective of this work is to present a comprehensive account of the influence of various biotic and abiotic factors on TIA biosynthesis and to discuss possible strategies to enhance TIA production through metabolic engineering.


Asunto(s)
Catharanthus/metabolismo , Ingeniería Metabólica/métodos , Alcaloides de Triptamina Secologanina/metabolismo , Vías Biosintéticas/genética , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
13.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011339

RESUMEN

Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.


Asunto(s)
Estructura Molecular , Ácido Valproico/química , Ácido Valproico/farmacología , Amidas/química , Amidas/farmacología , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Monitoreo de Drogas , Epilepsia/tratamiento farmacológico , Humanos , Relación Estructura-Actividad , Teratógenos/química , Teratógenos/farmacología , Urea/análogos & derivados , Urea/química , Urea/farmacología , Ácido Valproico/administración & dosificación , Ácido Valproico/análogos & derivados
14.
New Phytol ; 213(3): 1107-1123, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27801944

RESUMEN

Catharanthus roseus produces bioactive terpenoid indole alkaloids (TIAs), including the chemotherapeutics, vincristine and vinblastine. Transcriptional regulation of TIA biosynthesis is not fully understood. The jasmonic acid (JA)-responsive AP2/ERF transcription factor (TF), ORCA3, and its regulator, CrMYC2, play key roles in TIA biosynthesis. ORCA3 forms a physical cluster with two uncharacterized AP2/ERFs, ORCA4 and 5. Here, we report that (1) the ORCA gene cluster is differentially regulated; (2) ORCA4, while overlapping functionally with ORCA3, modulates an additional set of TIA genes. Unlike ORCA3, ORCA4 overexpression resulted in dramatic increase of TIA accumulation in C. roseus hairy roots. In addition, CrMYC2 is capable of activating ORCA3 and co-regulating TIA pathway genes concomitantly with ORCA3. The ORCA gene cluster and CrMYC2 act downstream of a MAP kinase cascade that includes a previously uncharacterized MAP kinase kinase, CrMAPKK1. Overexpression of CrMAPKK1 in C. roseus hairy roots upregulated TIA pathways genes and increased TIA accumulation. This work provides detailed characterization of a TF gene cluster and advances our understanding of the transcriptional and post-translational regulatory mechanisms that govern TIA biosynthesis in C. roseus.


Asunto(s)
Catharanthus/enzimología , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas/genética , Familia de Multigenes , Proteínas de Plantas/genética , Alcaloides de Triptamina Secologanina/metabolismo , Factores de Transcripción/genética , Acetatos/farmacología , Secuencias de Aminoácidos , Catharanthus/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaboloma/genética , Modelos Biológicos , Oxilipinas/farmacología , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
15.
Cureus ; 16(2): e54497, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38516432

RESUMEN

Introduction Orthodontic diagnosis and treatment planning encounter distinctive complexities when dealing with cleft lip and palate anomalies. This research endeavors to thoroughly examine skeletal and dental characteristics through cephalometric analyses among individuals with bilateral cleft lip and palate (BCLP) within the central Indian population. Due to anatomical variations and growth constraints, traditional cephalometric mean values derived from standard population studies are often inadequate for these cases. Advanced technology, such as NemoCeph (Nemotech, Madrid, Spain) software, enhances measurement accuracy. Methods Fifty patients, including 25 with BCLP and 25 without BCLP, aged 10 to 18, were selected for this cross-sectional study. Lateral cephalograms were traced and analyzed using NemoCeph software. Skeletal and dental parameters were measured, and a comparison was made between BCLP patients and the general population. Statistical analysis was conducted using the Student's unpaired t-test. Both SPSS Statistics Version 24.0 (IBM Corp., Armonk, NY, USA) and GraphPad Prism Version 7.0 (GraphPad Software, San Diego, CA, USA) were used for data analysis. Results The investigation revealed significant disparities across several parameters, including sella-nasion-A point angle (SNA), sella-nasion-B point angle (SNB), A point-nasion-B point angle (ANB), the inter-incisal angle (the angle between the long axes of the upper and lower incisors), and UP 1 to A-pog (a specific vertical measurement between anatomical markers labeled "upper 1" and "A point to pogonion"), with associated p-values for the skeletal and dental parameters of 0.310, 0.259, 0.195, 0.0001, and 0.0001, respectively. A comparison between manual tracing and digital methods indicated a reduction in errors and an improvement in measurement precision. Notably, patients diagnosed with BCLP exhibited distinctive skeletal and dental traits, highlighting the necessity for tailored treatment approaches. Conclusion This study emphasizes the importance of personalized cephalometric evaluations for patients with BCLP. Standard mean values may not be applicable due to unique anatomical considerations in these cases. Advanced technology and patient-specific assessments are crucial for accurate diagnosis, treatment planning, and orthognathic procedures in individuals with cleft lip and palate conditions. Embracing digital tools and tailored approaches can enhance patient care quality and lead to better clinical outcomes.

16.
Cureus ; 16(6): e61512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38957252

RESUMEN

BACKGROUND: This study aims to assess the effectiveness of the chronic care model (CCM) in helping primary healthcare workers quit smoking. The intervention involves implementing the CCM, which includes six key elements: the healthcare system, clinical care planning, clinical management information, self-management guidance, community resources, and decision-making. MATERIAL AND METHODS: The study is based on a population of 60 primary healthcare workers who smoke. The main outcome measure is smoking cessation, determined by cotinine levels in urine at the baseline, and at 6 and 12 months after the intervention. Other potential results include alterations in smoking-related behaviors and attitudes. Data analysis involves using descriptive statistics and inferential tests to determine the intervention's effectiveness in smoking cessation among primary healthcare workers. RESULTS:  The CCM is expected to have contributed to a substantial decrease in the smoking rate among primary healthcare workers. It is also seen that there is a great reduction in urine cotinine levels during the 12-month intervention period. Moreover, a positive shift in the smoking-related behaviors and attitudes of the participants is expected. CONCLUSION:  This study provides key data about the effectiveness of the CCM in helping primary healthcare workers stop smoking. This statement emphasizes the importance of considering socioeconomic factors in the design and implementation of smoking cessation interventions. This ensures that people of different incomes and social statuses have equal access to quitting smoking and achieve similar results.

17.
Cureus ; 15(10): e46348, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37920637

RESUMEN

Background Clear aligners have been one of the most recent advancements in the field of orthodontics. With an increasing demand for aesthetics, the use of clear aligners has progressed, but knowledge is still lacking among the population. Therefore, this study aims to evaluate the perception and awareness of health professional graduates regarding the use of clear aligners in orthodontic treatment. Materials and methods A draft questionnaire was formulated and validated consisting of eight open-ended questions assessing the perception of respondents and two close-ended questions assessing awareness of clear aligners. A web-based survey was performed. The sample (n=438) population included graduates of different health professions including medical (248), Ayurveda (114), nursing (18) and physiotherapy(58). A Google form was prepared and the link was circulated to all. The response was sought in terms of Likert scales. Results A total of 438 graduates responded to the questionnaire, of which 56% were from medical faculty, 26% from Ayurveda, 13.20% from physiotherapy, and 4.1% from nursing. On average, the awareness and perception of health professional graduates regarding the use of clear aligners in orthodontics was average to low. Among all the health professions, the graduates from the medical faculty showed maximum knowledge regarding clear aligners, whereas the awareness amongst the nursing students was the least. Conclusion On assessing the knowledge of health professional graduates from different faculties regarding clear aligners, statistically different results were found for responses from all faculties. Since it is one of the most recent advancements in the field of orthodontics, there is a need to bridge this knowledge gap among health professionals, which would help them guide their patients to seek the best treatment modality at the appropriate age.

18.
Cureus ; 15(1): e33779, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36819367

RESUMEN

Dental composite resins are widely popular restoratives, as, when using these tools to restore the tooth, only the infected and affected carious structures are removed. This allows the patient to retain a greater quantity of their natural tooth structure than they would have using conventional principles of cavity preparation. Nanomaterials are a new concept concerning the manipulation of materials on an atomic or molecular level. However, on a nanoscale, the chemical, biological, and physical properties of an atom vary compared to the properties of its naturally occurring compound form. The main idea of shifting focus to the inclusion of nanomaterials is to aid in the detection, treatment, and prevention of the recurrence of a pathology (secondary caries). The primary aim of using nanomaterials in composites is to augment their strength, wear resistance, and microhardness. This usage also reduces polymerization shrinkage. Nanomaterials are capable of enhancing mechanical properties, life, and bond strength between dentin and restoration. This review aims to highlight different research studies and experiments that have been conducted on the use of nanomaterials in restorative dentistry in order to understand the versatility of these materials and their viability in practice.

19.
Cureus ; 15(10): e47633, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38022289

RESUMEN

Orthodontic archwires are the primary aid to achieve desirable tooth movement. These wires are also considered to be the backbone of orthodontic treatment. Orthodontic archwires are available in various materials. The journey of advancement of these wires has shown immense growth in aesthetics as well as the mechanical properties of the materials used to ultimately provide patient satisfaction. This review highlights the properties of orthodontic archwires and the disadvantages associated with these wires which limit their use in today's era. The major role of the clinician is to choose the most appropriate alloy as per the needs of the patient. This can be done by accurately analyzing the properties of every material. The introduction of robotic systems in bending archwires and the properties of newer materials like organic polymer wires and bactericide archwires have also been described in this review. Thus, this review article focuses on the recent advances in orthodontic archwires and their properties for selection as per need.

20.
Cureus ; 15(2): e35086, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36938244

RESUMEN

A chronic, recurring illness, known as nicotine addiction and dependence, is defined by a person's dependence on the substance up to the extent that their normal day-to-day activities are compromised in the absence of the substance. This paper will highlight first-line smoking cessation treatments, such as nicotine replacement therapy (NRT), bupropion, and varenicline, and second-line medications, such as clonidine, nortriptyline, anxiolytics, mecamylamine, naltrexone, and NicVAX (Nabi Biopharmaceuticals, Rockville, MD, USA). NRT offers many options for nicotine delivery methods, comprising nicotine gum, rapid-release gum, lozenges, transdermal patches, high-dose nicotine patches, oral inhalers, nasal sprays, electronic nicotine delivery systems (ENDS), and sublingual tablets. Pharmacotherapies for quitting tobacco should lessen withdrawal symptoms and stop nicotine's reinforcing effects without having too many side effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA