Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Cardiol Rep ; 24(12): 2043-2056, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279036

RESUMEN

PURPOSE OF REVIEW: The incidence of type 1 diabetes (T1D) is rising in all age groups. T1D is associated with chronic microvascular and macrovascular complications but improving glycemic trends can delay the onset and slow the progression of these complications. Utilization of technological devices for diabetes management, such as continuous glucose monitors (CGM) and insulin pumps, is increasing, and these devices are associated with improvements in glycemic trends. Thus, device use may be associated with long-term prevention of T1D complications, yet few studies have investigated the direct impacts of devices on chronic complications in T1D. This review will describe common diabetes devices and combination systems, as well as review relationships between device use and cardiovascular outcomes in T1D. RECENT FINDINGS: Findings from existing cohort and national registry studies suggest that pump use may aid in improving cardiovascular risk factors such as hypertension and dyslipidemia. Furthermore, pump users have been shown to have lower arterial stiffness and better measures of myocardial function. In registry and case-control longitudinal data, pump use has been associated with fewer cardiovascular events and reduction of cardiovascular disease (CVD) and all-cause mortality. CVD is the leading cause of morbidity and mortality in T1D. Consistent use of diabetes devices may protect against the development and progression of macrovascular complications such as CVD through improvement in glycemic trends. Existing literature is limited, but findings suggest that pump use may reduce acute cardiovascular risk factors as well as chronic cardiovascular complications and overall mortality in T1D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Glucemia , Automonitorización de la Glucosa Sanguínea , Enfermedades Cardiovasculares/prevención & control , Hipoglucemiantes/uso terapéutico
3.
Endocrines ; 5(2): 197-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764894

RESUMEN

Adult-onset diabetes increases one's risk of neurodegenerative disease including Alzheimer's disease (AD); however, the risk associated with youth-onset diabetes (Y-DM) remains underexplored. We quantified plasma biomarkers of neurodegeneration and AD in participants with Y-DM from the SEARCH cohort at adolescence and young adulthood (Type 1, n = 25; Type 2, n = 25; 59% female; adolescence, age = 15 y/o [2.6]; adulthood, age = 27.4 y/o [2.2]), comparing them with controls (adolescence, n = 25, age = 14.8 y/o [2.7]; adulthood, n = 21, age = 24.9 y/o [2.8]). Plasma biomarkers, including glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), phosphorylated tau-181 (pTau181), and amyloid beta (Aß40, Aß42), were measured via Simoa. A subset of participants (n = 7; age = 27.5 y/o [5.7]) and six controls (age = 25.1 y/o [4.5]) underwent PET scans to quantify brain amyloid and tau densities in AD sensitive brain regions. Y-DM adolescents exhibited lower plasma levels of Aß40, Aß42, and GFAP, and higher pTau181 compared to controls (p < 0.05), a pattern persisting into adulthood (p < 0.001). All biomarkers showed significant increases from adolescence to adulthood in Y-DM (p < 0.01), though no significant differences in brain amyloid or tau were noted between Y-DM and controls in adulthood. Preliminary evidence suggests that preclinical AD neuropathology is present in young people with Y-DM, indicating a potential increased risk of neurodegenerative diseases.

4.
Diabetes Care ; 46(6): 1218-1222, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023293

RESUMEN

OBJECTIVE: While continuous glucose monitors (CGMs), insulin pumps, and hybrid closed-loop (HCL) systems each improve glycemic control in type 1 diabetes, it is unclear how the use of these technologies impacts real-world pediatric care. RESEARCH DESIGN AND METHODS: We found 1,455 patients aged <22 years, with type 1 diabetes duration >3 months, and who had data from a single center in between both 2016-2017 (n = 2,827) and 2020-2021 (n = 2,731). Patients were grouped by multiple daily injections or insulin pump, with or without an HCL system, and using a blood glucose monitor or CGM. Glycemic control was compared using linear mixed-effects models adjusting for age, diabetes duration, and race/ethnicity. RESULTS: CGM use increased from 32.9 to 75.3%, and HCL use increased from 0.3 to 27.9%. Overall A1C decreased from 8.9 to 8.6% (P < 0.0001). CONCLUSIONS: Adoption of CGM and HCL was associated with decreased A1C, suggesting promotion of these technologies may yield glycemic benefits.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Niño , Hemoglobina Glucada , Etnicidad , Sistemas de Infusión de Insulina , Tecnología , Glucemia , Automonitorización de la Glucosa Sanguínea , Insulina , Hipoglucemiantes
5.
J Diabetes Complications ; 37(2): 108384, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623423

RESUMEN

AIMS: Elevated triglycerides (TG) are associated with development and progression of kidney disease, and TG distributions across lipoprotein subclasses predict kidney dysfunction in adults with type 1 diabetes (T1D). Little is known regarding these relationships in youth. METHODS: In this single center study conducted from October 2018-2019, lipid constituents from lipoprotein subclasses were quantified by targeted nuclear magnetic resonance spectroscopy. Glomerular filtration rate (GFR), renal plasma flow (RPF), afferent arteriolar resistance (RA), efferent arteriolar resistance (RE), intraglomerular pressure (PGLO), urine albumin-to-creatinine ratio (UACR), and chitinase-3-like protein 1 (YKL-40), a marker of kidney tubule injury, were assessed. Cross-sectional relationships were assessed by correlation and multivariable linear regression (adjusted for age, sex, HbA1c) models. RESULTS: Fifty youth with T1D (age 16 ± 3 years, 50 % female, HbA1c 8.7 ± 1.3 %, T1D duration 5.7 ± 2.6 years) were included. Very-low-density lipoprotein (VLDL)-TG concentrations correlated and associated with intraglomerular hemodynamic function markers including GFR, PGLO, UACR, as did small low-density lipoprotein (LDL)-TG and small high-density lipoprotein (HDL)-TG. YKL-40 correlated with all lipoprotein subclasses. CONCLUSION: TG within lipoprotein subclasses, particularly VLDL, associated with PGLO, GFR, albuminuria, and YKL-40. Lipid perturbations may serve as novel targets to mitigate early kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Femenino , Humanos , Masculino , Adulto Joven , Proteína 1 Similar a Quitinasa-3 , Hemoglobina Glucada , Hemodinámica , Riñón , Lipoproteínas , Triglicéridos
6.
Med Devices (Auckl) ; 14: 339-354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803408

RESUMEN

Diabetes-related technology has undergone great advancement in recent years. These technological devices are more commonly utilized in the type 1 diabetes population, which requires insulin as the primary treatment modality. Available devices include insulin pumps, continuous glucose monitors, and hybrid systems referred to as automated insulin delivery systems or hybrid closed-loop systems, which combine those two devices along with software algorithms to achieve advanced therapeutic capabilities, including automatic modulation of insulin delivery based on sensor-derived glucose levels to minimize abnormal glucose trends. Use of diabetes technology is associated with significant positive health and psychosocial outcomes, yet utilization rates are generally lacking across both adult and pediatric type 1 diabetes populations in the United States and other countries. There are consistent themes in existing barriers to technology uptake reported by individuals with type 1 diabetes or parents of children with type 1 diabetes, including physical burdens associated with wearing the devices, concerns in navigating the technology and the devices' abilities to meet user expectations, high cost, inadequate resources within the healthcare team to support device use, disparities in technology access, and psychosocial barriers. It is important to understand the common barriers to uptake of not only the automated insulin delivery systems but also their component devices (insulin pumps and continuous glucose monitors) to fully support individuals in utilizing these devices and optimizing health benefits. The purpose of this article is to summarize the current automated insulin delivery devices that are available for use in management of type 1 diabetes, review common barriers to uptake of those systems and their component devices, and provide expert opinion on existing and future solutions to identified barriers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA