RESUMEN
Chronic myeloid leukaemia (CML) is driven by the activity of the BCR-ABL1 fusion oncoprotein. ABL1 kinase inhibitors have improved the clinical outcomes for patients with CML, with over 80% of patients treated with imatinib surviving for more than 10 years. Second-generation ABL1 kinase inhibitors induce more potent molecular responses in both previously untreated and imatinib-resistant patients with CML. Studies in patients with chronic-phase CML have shown that around 50% of patients who achieve and maintain undetectable BCR-ABL1 transcript levels for at least 2 years remain disease-free after the withdrawal of treatment. Here we characterize ABL001 (asciminib), a potent and selective allosteric ABL1 inhibitor that is undergoing clinical development testing in patients with CML and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. Consistent with this profile, acquired resistance was observed with single-agent therapy in mice; however, the combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumours without recurrence after the cessation of treatment.
Asunto(s)
Sitio Alostérico/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Niacinamida/análogos & derivados , Pirazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Dominio Catalítico/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dasatinib/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quimioterapia Combinada , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Mutación , Niacinamida/farmacología , Niacinamida/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs.
Asunto(s)
Huesos/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Administración Oral , Disponibilidad Biológica , Huesos/enzimología , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , HumanosRESUMEN
Bisphosphonates are potent inhibitors of farnesyl pyrophosphate synthase (FPPS) and are highly efficacious in the treatment of bone diseases such as osteoporosis, Paget's disease and tumor-induced osteolysis. In addition, the potential for direct antitumor effects has been postulated on the basis of in vitro and in vivo studies and has recently been demonstrated clinically in early breast cancer patients treated with the potent bisphosphonate zoledronic acid. However, the high affinity of bisphosphonates for bone mineral seems suboptimal for the direct treatment of soft-tissue tumors. Here we report the discovery of the first potent non-bisphosphonate FPPS inhibitors. These new inhibitors bind to a previously unknown allosteric site on FPPS, which was identified by fragment-based approaches using NMR and X-ray crystallography. This allosteric and druggable pocket allows the development of a new generation of FPPS inhibitors that are optimized for direct antitumor effects in soft tissue.
Asunto(s)
Difosfonatos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Regulación Alostérica , Sitio Alostérico , Huesos/química , Huesos/metabolismo , Cristalografía por Rayos X , Difosfonatos/análisis , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Geraniltranstransferasa/metabolismo , Humanos , Imidazoles/análisis , Imidazoles/química , Imidazoles/farmacología , Espectroscopía de Resonancia Magnética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Ácido ZoledrónicoRESUMEN
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.
Asunto(s)
Péptidos/farmacología , Proproteína Convertasa 9/metabolismo , Receptores de LDL/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/síntesis química , Péptidos/química , Conformación Proteica , Receptores de LDL/metabolismoRESUMEN
The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr-Abl, fail to effectively suppress the Bcr-Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr-Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.
Asunto(s)
Adenosina Trifosfato/química , Ácido Mirístico/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Benzamidas , Cristalografía por Rayos X , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Mesilato de Imatinib , Mutación Missense , Ácido Mirístico/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Resonancia Magnética Nuclear Biomolecular , Piperazinas/química , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Pirimidinas/química , Pirimidinas/uso terapéuticoRESUMEN
Allosteric inhibitors of Bcr-Abl have emerged as a novel therapeutic option for the treatment of CML. Using fragment-based screening, a search for novel Abl inhibitors that bind to the myristate pocket was carried out. Here we show that not all myristate ligands are functional inhibitors, but that the conformational state of C-terminal helix_I is a structural determinant for functional activity. We present an NMR-based conformational assay to monitor the conformation of this crucial helix_I and show that myristate ligands that bend helix_I are functional antagonists, whereas ligands that bind to the myristate pocket but do not induce this conformational change are kinase agonists. Activation of c-Abl by allosteric agonists has been confirmed in a biochemical assay.
Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/agonistas , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Regulación Alostérica , Animales , Activación Enzimática/efectos de los fármacos , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Ácido Mirístico/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismoRESUMEN
The use of DNA-encoded libraries has emerged as a powerful hit generation technology. Combining the power of combinatorial chemistry to enumerate large compound collections with the efficiency of affinity selection in pools, the methodology makes it possible to interrogate vast chemical space against biological targets of pharmaceutical relevance. Thus, the chemical transformations employed for the synthesis of encoded libraries play a crucial role in the identification of diverse and drug-like starting points. Currently established transformations have mostly been limited to water-compatible reactions to accommodate the growing oligonucleotide tag. Herein, we describe the development of a practical catch-and-release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (amphiphilic polymer-facilitated transformations under anhydrous conditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane, and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.
Asunto(s)
Técnicas Químicas Combinatorias , ADN/química , Polímeros/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Tensoactivos/química , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.
Asunto(s)
Descubrimiento de Drogas , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Niacinamida/análogos & derivados , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Regulación Alostérica , Animales , Perros , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Ratones , Modelos Moleculares , Estructura Molecular , Mutación , Niacinamida/química , Niacinamida/farmacología , Fosforilación , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Farnesyl pyrophosphate synthase (FPPS) is an established target for the treatment of bone diseases, but also shows promise as an anticancer and anti-infective drug target. Currently available anti-FPPS drugs are active-site-directed bisphosphonate inhibitors, the peculiar pharmacological profile of which is inadequate for therapeutic indications beyond bone diseases. The recent discovery of an allosteric binding site has paved the way toward the development of novel non-bisphosphonate FPPS inhibitors with broader therapeutic potential, notably as immunomodulators in oncology. Herein we report the discovery, by an integrated lead finding approach, of two new chemical classes of allosteric FPPS inhibitors that belong to the salicylic acid and quinoline chemotypes. We present their synthesis, biochemical and cellular activities, structure-activity relationships, and provide X-ray structures of several representative FPPS complexes. These novel allosteric FPPS inhibitors are devoid of any affinity for bone mineral and could serve as leads to evaluate their potential in none-bone diseases.