Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421948

RESUMEN

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Humanos , Encefalopatías/genética , Canales Iónicos/genética , Encéfalo , Discapacidad Intelectual/genética , Fenotipo
2.
Hum Mol Genet ; 28(22): 3755-3765, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31411685

RESUMEN

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.


Asunto(s)
Hemimegalencefalia/genética , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/genética , Animales , Encéfalo/metabolismo , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Femenino , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/genética , Ratones , Mosaicismo , Mutación , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
bioRxiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314456

RESUMEN

Advanced 3D imaging techniques and image segmentation and classification methods can profoundly transform biomedical research by offering deep insights into the cytoarchitecture of the human brain in relation to pathological conditions. Here, we propose a comprehensive pipeline for performing 3D imaging and automated quantitative cellular phenotyping on Formalin-Fixed Paraffin-Embedded (FFPE) human brain specimens, a valuable yet underutilized resource. We exploited the versatility of our method by applying it to different human specimens from both adult and pediatric, normal and abnormal brain regions. Quantitative data on neuronal volume, ellipticity, local density, and spatial clustering level were obtained from a machine learning-based analysis of the 3D cytoarchitectural organization of cells identified by different molecular markers in two subjects with malformations of cortical development (MCD). This approach will grant access to a wide range of physiological and pathological paraffin-embedded clinical specimens, allowing for volumetric imaging and quantitative analysis of human brain samples at cellular resolution. Possible genotype-phenotype correlations can be unveiled, providing new insights into the pathogenesis of various brain diseases and enlarging treatment opportunities.

4.
J Neuropathol Exp Neurol ; 80(2): 160-168, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274363

RESUMEN

Epilepsy is a heterogenous group of disorders defined by recurrent seizure activity due to abnormal synchronized activity of neurons. A growing number of epilepsy cases are believed to be caused by genetic factors and copy number variants (CNV) contribute to up to 5% of epilepsy cases. However, CNVs in epilepsy are usually large deletions or duplications involving multiple neurodevelopmental genes. In patients who underwent seizure focus resection for treatment-resistant epilepsy, whole genome DNA methylation profiling identified 3 main clusters of which one showed strong association with receptor tyrosine kinase (RTK) genes. We identified focal copy number gains involving epidermal growth factor receptor (EGFR) and PDGFRA loci. The dysplastic neurons of cases with amplifications showed marked overexpression of EGFR and PDGFRA, while glial and endothelial cells were negative. Targeted sequencing of regulatory regions and DNA methylation analysis revealed that only enhancer regions of EGFR and gene promoter of PDGFRA were amplified, while coding regions did not show copy number abnormalities or somatic mutations. Somatic focal copy number gains of noncoding regulatory represent a previously unrecognized genetic driver in epilepsy and a mechanism of abnormal activation of RTK genes. Upregulated RTKs provide a potential avenue for therapy in seizure disorders.


Asunto(s)
Encéfalo/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Epilepsia Refractaria/genética , Receptores ErbB/genética , Adolescente , Adulto , Niño , Epilepsia Refractaria/metabolismo , Receptores ErbB/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
5.
Oncotarget ; 7(49): 80113-80130, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27741509

RESUMEN

The dual-specificity kinases MEK1 and MEK2 act downstream of RAS/RAF to induce ERK activation, which is generally considered protumorigenic. Activating MEK mutations have not been discovered in leukemia, in which pathway activation is caused by mutations in upstream components such as RAS or Flt3. The anti-leukemic potential of MEK inhibitors is being tested in clinical trials; however, downregulation of MEK1 promotes Eµ-Myc-driven lymphomagenesis and MEK1 ablation induces myeloproliferative disease in mice, raising the concern that MEK inhibitors may be inefficient or counterproductive in this context. We investigated the role of MEK1 in the proliferation of human leukemic cell lines and in retroviral models of leukemia. Our data show that MEK1 suppression via RNA interference and genomic engineering does not affect the proliferation of human leukemic cell lines in culture; similarly, MEK1 ablation does not impact the development of MYC-driven leukemia in vivo. In contrast, MEK1 ablation significantly reduces tumorigenesis driven by Nras alone or in combination with Myc. Thus, while MEK1 restricts proliferation and tumorigenesis in some cellular and genetic contexts, it cannot be considered a tumor suppressor in the context of leukemogenesis. On the contrary, its role in NRAS-driven leukemogenesis advocates the use of MEK inhibitors, particularly in combination with PI3K/AKT inhibitors, in hematopoietic malignancies involving RAS activation.


Asunto(s)
GTP Fosfohidrolasas/genética , Leucemia/enzimología , MAP Quinasa Quinasa 1/metabolismo , Proteínas de la Membrana/genética , Animales , Proliferación Celular , Regulación Leucémica de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HL-60 , Humanos , Células K562 , Leucemia/genética , Leucemia/patología , MAP Quinasa Quinasa 1/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Transducción de Señal , Células THP-1 , Factores de Tiempo , Transfección , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA