Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965443

RESUMEN

Recent developments of sequencing-based spatial transcriptomics (sST) have catalyzed important advancements by facilitating transcriptome-scale spatial gene expression measurement. Despite this progress, efforts to comprehensively benchmark different platforms are currently lacking. The extant variability across technologies and datasets poses challenges in formulating standardized evaluation metrics. In this study, we established a collection of reference tissues and regions characterized by well-defined histological architectures, and used them to generate data to compare 11 sST methods. We highlighted molecular diffusion as a variable parameter across different methods and tissues, significantly affecting the effective resolutions. Furthermore, we observed that spatial transcriptomic data demonstrate unique attributes beyond merely adding a spatial axis to single-cell data, including an enhanced ability to capture patterned rare cell states along with specific markers, albeit being influenced by multiple factors including sequencing depth and resolution. Our study assists biologists in sST platform selection, and helps foster a consensus on evaluation standards and establish a framework for future benchmarking efforts that can be used as a gold standard for the development and benchmarking of computational tools for spatial transcriptomic analysis.

2.
Nat Methods ; 20(7): 1048-1057, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37231265

RESUMEN

The brain is a complex tissue whose function relies on coordinated anatomical and molecular features. However, the molecular annotation of the spatial organization of the brain is currently insufficient. Here, we describe microfluidic indexing-based spatial assay for transposase-accessible chromatin and RNA-sequencing (MISAR-seq), a method for spatially resolved joint profiling of chromatin accessibility and gene expression. By applying MISAR-seq to the developing mouse brain, we study tissue organization and spatiotemporal regulatory logics during mouse brain development.


Asunto(s)
Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Ratones , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN , Encéfalo , Expresión Génica , Perfilación de la Expresión Génica
3.
Nature ; 586(7827): E7, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32934359

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nature ; 577(7791): E6, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896818

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587592

RESUMEN

Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.


Asunto(s)
Hemangioblastos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Hemangioblastos/metabolismo
6.
Nature ; 572(7770): 528-532, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391582

RESUMEN

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Vía de Señalización Hippo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Regulón/genética , Transducción de Señal , Transcriptoma/genética , Proteínas Señalizadoras YAP
7.
Ann Rheum Dis ; 83(7): 926-944, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38325908

RESUMEN

OBJECTIVES: Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations. METHODS: Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies. RESULTS: We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype. CONCLUSIONS: Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.


Asunto(s)
Cartílago Articular , Condrocitos , Osteoartritis de la Rodilla , Humanos , Condrocitos/patología , Condrocitos/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/genética , Cartílago Articular/patología , Cartílago Articular/metabolismo , Persona de Mediana Edad , Masculino , Transcriptoma , Estudio de Asociación del Genoma Completo , Femenino , Análisis de la Célula Individual/métodos , Anciano , Perfilación de la Expresión Génica/métodos , Hipertrofia/genética , Multiómica
8.
Annu Rev Genomics Hum Genet ; 21: 163-181, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32339035

RESUMEN

Embryonic development and stem cell differentiation provide a paradigm to understand the molecular regulation of coordinated cell fate determination and the architecture of tissue patterning. Emerging technologies such as single-cell RNA sequencing and spatial transcriptomics are opening new avenues to dissect cell organization, the divergence of morphological and molecular properties, and lineage allocation. Rapid advances in experimental and computational tools have enabled researchers to make many discoveries and revisit old hypotheses. In this review, we describe the use of single-cell RNA sequencing in studies of molecular trajectories and gene regulation networks for stem cell lineages, while highlighting the integratedexperimental and computational analysis of single-cell and spatial transcriptomes in the molecular annotation of tissue lineages and development during postimplantation gastrulation.


Asunto(s)
Linaje de la Célula , Biología Computacional/métodos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Diferenciación Celular , Humanos , Análisis Espacial
9.
Development ; 146(7)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890572

RESUMEN

During embryogenesis, the stringent regulation of Wnt activity is crucial for the morphogenesis of the head and brain. The loss of function of the Wnt inhibitor Dkk1 results in elevated Wnt activity, loss of ectoderm lineage attributes from the anterior epiblast, and the posteriorisation of anterior germ layer tissue towards the mesendoderm. The modulation of Wnt signalling may therefore be crucial for the allocation of epiblast cells to ectoderm progenitors during gastrulation. To test this hypothesis, we examined the lineage characteristics of epiblast stem cells (EpiSCs) that were derived and maintained under different signalling conditions. We showed that suppression of Wnt activity enhanced the ectoderm propensity of the EpiSCs. Neuroectoderm differentiation of these EpiSCs was further empowered by the robust re-activation of Wnt activity. Therefore, during gastrulation, the tuning of the signalling activities that mediate mesendoderm differentiation is instrumental for the acquisition of ectoderm potency in the epiblast.


Asunto(s)
Diferenciación Celular/fisiología , Ectodermo/citología , Estratos Germinativos/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Ectodermo/metabolismo , Gastrulación/genética , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/metabolismo , Ratones , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31853542

RESUMEN

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Ratones
11.
PLoS Genet ; 15(2): e1007977, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789911

RESUMEN

Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease.


Asunto(s)
Células Endoteliales/citología , Válvulas Cardíacas/crecimiento & desarrollo , Hipertrofia Ventricular Izquierda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Vía de Señalización Hippo , Homeostasis , Hipertrofia Ventricular Izquierda/veterinaria , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
12.
Genesis ; 56(9): e23246, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114334

RESUMEN

Development of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of LHX1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting LHX1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.


Asunto(s)
Redes Reguladoras de Genes , Genes Homeobox , Cabeza/embriología , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Células Germinativas/fisiología , Transcripción Genética , Xenopus laevis/embriología
13.
J Biol Chem ; 292(48): 19590-19604, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972157

RESUMEN

Proper neural commitment is essential for ensuring the appropriate development of the human brain and for preventing neurodevelopmental diseases such as autism spectrum disorders, schizophrenia, and intellectual disorders. However, the molecular mechanisms underlying the neural commitment in humans remain elusive. Here, we report the establishment of a neural differentiation system based on human embryonic stem cells (hESCs) and on comprehensive RNA sequencing analysis of transcriptome dynamics during early hESC differentiation. Using weighted gene co-expression network analysis, we reveal that the hESC neurodevelopmental trajectory has five stages: pluripotency (day 0); differentiation initiation (days 2, 4, and 6); neural commitment (days 8-10); neural progenitor cell proliferation (days 12, 14, and 16); and neuronal differentiation (days 18, 20, and 22). These stages were characterized by unique module genes, which may recapitulate the early human cortical development. Moreover, a comparison of our RNA-sequencing data with several other transcriptome profiling datasets from mice and humans indicated that Module 3 associated with the day 8-10 stage is a critical window of fate switch from the pluripotency to the neural lineage. Interestingly, at this stage, no key extrinsic signals were activated. In contrast, using CRISPR/Cas9-mediated gene knockouts, we also found that intrinsic hub transcription factors, including the schizophrenia-associated SIX3 gene and septo-optic dysplasia-related HESX1 gene, are required to program hESC neural determination. Our results improve the understanding of the mechanism of neural commitment in the human brain and may help elucidate the etiology of human mental disorders and advance therapies for managing these conditions.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Neuronas/citología , Transcriptoma , Células Madre Embrionarias/química , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/genética , Proteína Homeobox SIX3
14.
Dev Growth Differ ; 60(8): 463-472, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30368783

RESUMEN

Gastrulation is a key milestone in early mouse development when multipotent epiblast cells are allocated to progenitors of diverse tissue lineages that constitute the ensemble of building blocks of the body plan. The analysis of gene function revealed that the activity of transcription factors is likely to be the fundamental driving force underpinning the lineage specification and tissue patterning in the primary germ layers. The developmental-spatial transcriptome of the gastrulating embryo revealed the concerted and interactive activity of the gene regulatory network anchored by development-related transcription factors. The findings of the network structure offer novel insights into the regionalization of tissue fates and enable tracking of the progression of epiblast patterning, leading to the construction of molecularly annotated fate maps of epiblast during gastrulation.


Asunto(s)
Gastrulación/genética , Redes Reguladoras de Genes/genética , Estratos Germinativos/metabolismo , Factores de Transcripción/metabolismo , Animales , Estratos Germinativos/citología , Estratos Germinativos/crecimiento & desarrollo , Ratones
15.
Acta Biochim Biophys Sin (Shanghai) ; 50(1): 68-73, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190317

RESUMEN

TGF-ß superfamily signaling pathways essentially contribute to the broad spectrum of early developmental events including embryonic patterning, cell fate determination and dynamic movements. In this review, we first introduced some key developmental processes that require TGF-ß signaling to show the fundamental importance of these pathways. Then we discuss how their activities are regulated, and new findings about how the TGF-ß superfamily ligands bind to the chromatin to regulate transcription during embryo development.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias de Ratones/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Factor de Crecimiento Transformador beta/metabolismo
16.
J Biol Chem ; 291(29): 15212-25, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226536

RESUMEN

Mouse pluripotent cells, such as embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), provide excellent in vitro systems to study imperative pre- and postimplantation events of in vivo mammalian development. It is known that mouse ESCs are dynamic heterogeneous populations. However, it remains largely unclear whether and how EpiSCs possess heterogeneity and plasticity similar to that of ESCs. Here, we show that EpiSCs are discriminated by the expression of a specific marker T (Brachyury) into two populations. The T-positive (T(+)) and the T-negative (T(-)) populations can be interconverted within the same culture condition. In addition, the two populations display distinct responses to bone morphogenetic protein (BMP) signaling and different developmental potentials. The T(-) EpiSCs are preferentially differentiated into ectoderm lineages, whereas T(+) EpiSCs have a biased potential for mesendoderm fates. Mechanistic studies reveal that T(+) EpiSCs have an earlier and faster response to BMP4 stimulation than T(-) EpiSCs. Id1 mediates the commitment of T(-) EpiSCs to epidermal lineage during BMP4 treatment. On the other hand, Snail modulates the conversion of T(+) EpiSCs to mesendoderm fates with the presence of BMP4. Furthermore, T expression is essential for epithelial-mesenchymal transition during EpiSCs differentiation. Our findings suggest that the dynamic heterogeneity of the T(+)/T(-) subpopulation primes EpiSCs toward particular cell lineages, providing important insights into the dynamic development of the early mouse embryo.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Proteínas Fetales/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas de Dominio T Box/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Endodermo/citología , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Mesodermo/citología , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Genome Res ; 22(1): 142-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21960545

RESUMEN

RNA editing enhances the diversity of gene products at the post-transcriptional level. Approaches for genome-wide identification of RNA editing face two main challenges: separating true editing sites from false discoveries and accurate estimation of editing levels. We developed an approach to analyze transcriptome sequencing data (RNA-seq) for global identification of RNA editing in cells for which whole-genome sequencing data are available. We applied the method to analyze RNA-seq data of a human glioblastoma cell line, U87MG. Around 10,000 DNA-RNA differences were identified, the majority being putative A-to-I editing sites. These predicted A-to-I events were associated with a low false-discovery rate (∼5%). Moreover, the estimated editing levels from RNA-seq correlated well with those based on traditional clonal sequencing. Our results further facilitated unbiased characterization of the sequence and evolutionary features flanking predicted A-to-I editing sites and discovery of a conserved RNA structural motif that may be functionally relevant to editing. Genes with predicted A-to-I editing were significantly enriched with those known to be involved in cancer, supporting the potential importance of cancer-specific RNA editing. A similar profile of DNA-RNA differences as in U87MG was predicted for another RNA-seq data set obtained from primary breast cancer samples. Remarkably, significant overlap exists between the putative editing sites of the two transcriptomes despite their difference in cell type, cancer type, and genomic backgrounds. Our approach enabled de novo identification of the RNA editome, which sets the stage for further mechanistic studies of this important step of post-transcriptional regulation.


Asunto(s)
Genoma Humano/fisiología , Edición de ARN/fisiología , Análisis de Secuencia de ARN/métodos , Transcriptoma/fisiología , Línea Celular Tumoral , Humanos , Análisis de Secuencia de ARN/instrumentación
18.
Dev Growth Differ ; 57(2): 109-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25708399

RESUMEN

Neural fate commitment is an early embryonic event that a group of cells in ectoderm, which do not ingress through primitive streak, acquire a neural fate but not epidermal or mesodermal lineages. Several extracellular signaling pathways initiated by the secreted proteins bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), wingless/int class proteins (WNTs) and Nodal play essential roles in the specification of the neural plate. Accumulating evidence from the studies on mouse and pluripotent embryonic stem cells reveals that except for the extracellular signals, the intracellular molecules, including both transcriptional and epigenetic factors, participate in the modulation of neural fate commitment as well. In the review, we mainly focus on recent findings that the initiation of the nervous system is elaborately regulated by the intrinsic programs, which are mediated by transcriptional factors such as Sox2, Zfp521, Sip1 and Pou3f1, as well as epigenetic modifications, including histone methylation/demethylation, histone acetylation/deacetylation, and DNA methylation/demethylation. The discovery of the intrinsic regulatory machineries provides better understanding of the mechanisms by which the neural fate commitment is ensured by the cooperation between extracellular factors and intracellular molecules.


Asunto(s)
Ectodermo/embriología , Células Madre Embrionarias/metabolismo , Mesodermo/embriología , Sistema Nervioso/embriología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Madre Embrionarias/citología , Humanos , Ratones , Sistema Nervioso/citología , Células Madre Pluripotentes/citología
19.
Nucleic Acids Res ; 40(13): e104, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22467206

RESUMEN

Establishing the functional roles of genetic variants remains a significant challenge in the post-genomic era. Here, we present a method, allele-specific alternative mRNA processing (ASARP), to identify genetically influenced mRNA processing events using transcriptome sequencing (RNA-Seq) data. The method examines RNA-Seq data at both single-nucleotide and whole-gene/isoform levels to identify allele-specific expression (ASE) and existence of allele-specific regulation of mRNA processing. We applied the methods to data obtained from the human glioblastoma cell line U87MG and primary breast cancer tissues and found that 26-45% of all genes with sufficient read coverage demonstrated ASE, with significant overlap between the two cell types. Our methods predicted potential mechanisms underlying ASE due to regulations affecting either whole-gene-level expression or alternative mRNA processing, including alternative splicing, alternative polyadenylation and alternative transcriptional initiation. Allele-specific alternative splicing and alternative polyadenylation may explain ASE in hundreds of genes in each cell type. Reporter studies following these predictions identified the causal single nucleotide variants (SNVs) for several allele-specific alternative splicing events. Finally, many genes identified in our study were also reported as disease/phenotype-associated genes in genome-wide association studies. Future applications of our approach may provide ample insights for a better understanding of the genetic basis of gene regulation underlying phenotypic diversity and disease mechanisms.


Asunto(s)
Alelos , Perfilación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia de ARN/normas
20.
Circ Res ; 109(12): 1332-41, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22034492

RESUMEN

RATIONALE: Accurate and comprehensive de novo transcriptome profiling in heart is a central issue to better understand cardiac physiology and diseases. Although significant progress has been made in genome-wide profiling for quantitative changes in cardiac gene expression, current knowledge offers limited insights to the total complexity in cardiac transcriptome at individual exon level. OBJECTIVE: To develop more robust bioinformatic approaches to analyze high-throughput RNA sequencing (RNA-Seq) data, with the focus on the investigation of transcriptome complexity at individual exon and transcript levels. METHODS AND RESULTS: In addition to overall gene expression analysis, the methods developed in this study were used to analyze RNA-Seq data with respect to individual transcript isoforms, novel spliced exons, novel alternative terminal exons, novel transcript clusters (ie, novel genes), and long noncoding RNA genes. We applied these approaches to RNA-Seq data obtained from mouse hearts after pressure-overload-induced by transaortic constriction. Based on experimental validations, analyses of the features of the identified exons/transcripts, and expression analyses including previously published RNA-Seq data, we demonstrate that the methods are highly effective in detecting and quantifying individual exons and transcripts. Novel insights inferred from the examined aspects of the cardiac transcriptome open ways to further experimental investigations. CONCLUSIONS: Our work provided a comprehensive set of methods to analyze mouse cardiac transcriptome complexity at individual exon and transcript levels. Applications of the methods may infer important new insights to gene regulation in normal and disease hearts in terms of exon utilization and potential involvement of novel components of cardiac transcriptome.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Corazón/fisiología , Análisis de Secuencia de ARN/métodos , Animales , Modelos Animales de Enfermedad , Exones/genética , Exones/fisiología , Regulación de la Expresión Génica/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Transcripción Genética/genética , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA