Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628504

RESUMEN

Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Profilinas , Proteínas de Unión al GTP rab , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagia/genética , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Mutación , Profilinas/genética , Profilinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
2.
Neurobiol Dis ; 154: 105359, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798740

RESUMEN

Autophagy, which mediates the delivery of cytoplasmic substrates to the lysosome for degradation, is essential for maintaining proper cell homeostasis in physiology, ageing, and disease. There is increasing evidence that autophagy is defective in neurodegenerative disorders, including motor neurons affected in amyotrophic lateral sclerosis (ALS). Restoring impaired autophagy in motor neurons may therefore represent a rational approach for ALS. Here, we demonstrate autophagy impairment in spinal cords of mice expressing mutant TDP-43Q331K or co-expressing TDP-43WTxQ331K transgenes. The clinically approved anti-hypertensive drug rilmenidine was used to stimulate mTOR-independent autophagy in double transgenic TDP-43WTxQ331K mice to alleviate impaired autophagy. Although rilmenidine treatment induced robust autophagy in spinal cords, this exacerbated the phenotype of TDP-43WTxQ331K mice, shown by truncated lifespan, accelerated motor neuron loss, and pronounced nuclear TDP-43 clearance. Importantly, rilmenidine significantly promoted mitophagy in spinal cords TDP-43WTxQ331K mice, evidenced by reduced mitochondrial markers and load in spinal motor neurons. These results suggest that autophagy induction accelerates the phenotype of this TDP-43 mouse model of ALS, most likely through excessive mitochondrial clearance in motor neurons. These findings also emphasise the importance of balancing autophagy stimulation with the potential negative consequences of hyperactive mitophagy in ALS and other neurodegenerative diseases.


Asunto(s)
Autofagia/fisiología , Proteínas de Unión al ADN/genética , Mitofagia/fisiología , Fenotipo , Rilmenidina/toxicidad , Serina-Treonina Quinasas TOR/genética , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antihipertensivos/toxicidad , Proteínas de Unión al ADN/biosíntesis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Serina-Treonina Quinasas TOR/biosíntesis
3.
Hum Mol Genet ; 26(9): 1732-1746, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334913

RESUMEN

TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.


Asunto(s)
Proteínas de Unión al ADN , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Antioxidantes , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , ARN/metabolismo , Médula Espinal/metabolismo
4.
Hum Mol Genet ; 25(18): 4080-4093, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466204

RESUMEN

Defects in the RNA-binding proteins survival motor neuron (SMN) and TAR DNA-binding protein 43 (TDP-43) cause progressive motor neuron degeneration in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. While low levels of SMN protein in motor neurons result in SMA, recent studies implicate abnormal SMN levels and function in ALS pathogenesis. Here, we determine that SMN protein is upregulated early and progressively in spinal and cortical motor neurons of male transgenic mutant TDP-43A315T mice. Cytoplasmic SMN aggregates that contain TDP-43 and HuR were identified in motor neurons of TDP-43A315T mice, consistent with the incorporation of SMN into stress granules. To test the impact of augmenting SMN levels in TDP-43 proteinopathy, we demonstrate that neuronal overexpression of human SMN in TDP-43A315T mice delayed symptom onset and prolonged survival. SMN upregulation also countered motor neuron degeneration, attenuated activation of astrocytes and microglia and restored AMP kinase activation in spinal cords of TDP-43A315T mice. We also reveal that expression of another factor conferring motor neuron vulnerability, androgen receptor (AR), is reduced in spinal cords of male TDP-43A315T mice. These results establish that SMN overexpression in motor neurons slows disease onset and outcome by ameliorating pathological signs in this model of mutant TDP-43-mediated ALS. Further approaches to augment SMN levels using pharmacological or gene therapy agents may therefore be warranted in ALS. Our data also reinforce a novel potential link between ALS and spinal bulbar muscular atrophy (SBMA), another motor neurodegenerative disease mediated by reduced AR function in motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Citoplasma/genética , Proteínas de Unión al ADN/biosíntesis , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Agregación Patológica de Proteínas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis
5.
J Neurochem ; 138(6): 785-805, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27333343

RESUMEN

Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.


Asunto(s)
Enfermedades del Sistema Nervioso/patología , Sinapsis/patología , Adulto , Niño , Humanos , Enfermedades Neurodegenerativas/patología
6.
Neurochem Res ; 41(3): 544-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26202426

RESUMEN

Amyotrophic lateral sclerosis (ALS) is caused by selective loss of upper and lower motor neurons by complex mechanisms that are incompletely understood. Motor neurons are large, highly polarised and excitable cells with unusually high energetic demands to maintain resting membrane potential and propagate action potentials. This leads to higher ATP consumption and mitochondrial metabolism in motor neurons relative to other cells. Here, we review increasing evidence that defective energy metabolism and homeostasis contributes to selective vulnerability and degeneration of motor neurons in ALS. Firstly, we provide a brief overview of major energetic pathways in the CNS, including glycolysis, oxidative phosphorylation and the AMP-activated protein kinase (AMPK) signalling pathway, while highlighting critical metabolic interactions between neurons and astrocytes. Next, we review evidence from ALS patients and transgenic mutant SOD1 mice for weight loss, hypermetabolism, hyperlipidemia and mitochondrial dysfunction in disease onset and progression. Genetic and therapeutic modifiers of energy metabolism in mutant SOD1 mice will also be summarised. We also present evidence that additional ALS-linked proteins, TDP-43 and FUS, lead to energy disruption and mitochondrial defects in motor neurons. Lastly, we review emerging evidence including our own that dysregulation of the AMPK signalling cascade in motor neurons is an early and common event in ALS pathogenesis. We suggest that an imbalance in energy metabolism should be considered an important factor in both progression and potential treatment of ALS.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Metabolismo Energético , Esclerosis Amiotrófica Lateral/genética , Animales , Encéfalo/metabolismo , Glucólisis , Humanos , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Fosforilación Oxidativa , Transducción de Señal , Médula Espinal/metabolismo
7.
J Neuroinflammation ; 12: 40, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25889790

RESUMEN

BACKGROUND: The peripheral immune system is implicated in modulating microglial activation, neurodegeneration and disease progression in amyotrophic lateral sclerosis (ALS). Specifically, there is reduced thymic function and regulatory T cell (Treg) number in ALS patients and mutant superoxide dismutase 1 (SOD1) mice, while passive transfer of Tregs ameliorates disease in mutant SOD1 mice. Here, we assessed the effects of augmenting endogenous CD4+ T cell number by stimulating the thymus using surgical castration on the phenotype of transgenic SOD1(G93A) mice. METHOD: Male SOD1(G93A) mice were castrated or sham operated, and weight loss, disease onset and progression were examined. Thymus atrophy and blood CD4+, CD8+ and CD4+ FoxP3+ T cell numbers were determined by fluorescence activated cell sorting (FACS). Motor neuron counts, glial cell activation and androgen receptor (AR) expression in the spinal cord were investigated using immunohistochemistry and Western blotting. Differences between castrated and sham mice were analysed using an unpaired t test or one-way ANOVA. RESULTS: Castration significantly increased thymus weight and total CD4+ T cell numbers in SOD1(G93A) mice, although Tregs levels were not affected. Despite this, disease onset and progression were similar in castrated and sham SOD1(G93A) mice. Castration did not affect motor neuron loss or astrocytic activation in spinal cords of SOD1(G93A) mice; however, microglial activation was reduced, specifically M1 microglia. We also show that AR is principally expressed in spinal motor neurons and progressively downregulated in spinal cords of SOD1(G93A) mice from disease onset which is further enhanced by castration. CONCLUSIONS: These results demonstrate that increasing thymic function and CD4+ T cell number by castration confers no clinical benefit in mutant SOD1 mice, which may reflect an inability to stimulate neuroprotective Tregs. Nonetheless, castration decreases M1 microglial activation in the spinal cord without any clinical improvement and motor neuron rescue, in contrast to other approaches to suppress microglia in mutant SOD1 mice. Lastly, diminished AR expression in spinal motor neurons, which links to another motor neuron disorder, spinal bulbar muscular atrophy (SBMA), may contribute to ALS pathogenesis and suggests a common disease pathway in ALS and SBMA mediated by disruption of AR signalling in motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Linfocitos T CD4-Positivos/patología , Superóxido Dismutasa/genética , Timo/patología , Esclerosis Amiotrófica Lateral/cirugía , Animales , Antígenos CD/sangre , Castración , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Médula Espinal/patología , Timo/cirugía
8.
Int J Pharm ; 659: 124198, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38816263

RESUMEN

Autophagy, an intracellular degradation system, plays a vital role in protecting cells by clearing damaged organelles, pathogens, and protein aggregates. Autophagy upregulation through pharmacological interventions has gained significant attention as a potential therapeutic avenue for proteinopathies. Here, we report the development of an autophagy-inducing peptide (BCN4) derived from the Beclin 1 protein, the master regulator of autophagy. To deliver the BCN4 into cells and the central nervous system (CNS), it was conjugated to our previously developed cell and blood-brain barrier-penetrating peptide (CPP). CPP-BCN4 significantly upregulated autophagy and reduced protein aggregates in motor neuron (MN)-like cells. Moreover, its systemic administration in a reporter mouse model of autophagy resulted in a significant increase in autophagy activity in the spinal MNs. Therefore, this novel autophagy-inducing peptide with a demonstrated ability to upregulate autophagy in the CNS has significant potential for the treatment of various neurodegenerative diseases with protein aggregates as a characteristic feature.


Asunto(s)
Autofagia , Beclina-1 , Neuronas Motoras , Regulación hacia Arriba , Animales , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Neuronas Motoras/efectos de los fármacos , Ratones , Regulación hacia Arriba/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Péptidos/farmacología , Péptidos/administración & dosificación , Péptidos/química , Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Humanos , Masculino , Agregado de Proteínas/efectos de los fármacos
9.
Neurobiol Aging ; 131: 74-87, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37586253

RESUMEN

This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ±â€¯5.3% vs. 3 months mice: -13.4 ±â€¯4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.


Asunto(s)
Presión Intraocular , Retina , Ratones , Animales , Células Ganglionares de la Retina/fisiología , Modelos Animales de Enfermedad , Ratones Transgénicos , Autofagia/genética
10.
Metabolites ; 12(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35888698

RESUMEN

Amyotrophic lateral sclerosis (ALS) patients show a myriad of energetic abnormalities, such as weight loss, hypermetabolism, and dyslipidaemia. Evidence suggests that these indices correlate with and ultimately affect the duration of survival. This review aims to discuss ALS metabolic abnormalities in the context of autophagy, the primordial system acting at the cellular level for energy production during nutrient deficiency. As the primary pathway of protein degradation in eukaryotic cells, the fundamental role of cellular autophagy is the adaptation to metabolic demands. Therefore, autophagy is tightly coupled to cellular metabolism. We review evidence that the delicate balance between autophagy and metabolism is aberrant in ALS, giving rise to intracellular and systemic pathophysiology observations. Understanding the metabolism autophagy crosstalk can lead to the identification of novel therapeutic targets for ALS.

11.
Front Endocrinol (Lausanne) ; 13: 808479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273564

RESUMEN

Sex steroid hormones have been implicated as disease modifiers in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Androgens, signalling via the androgen receptor (AR), predominate in males, and have widespread actions in the periphery and the central nervous system (CNS). AR translocates to the cell nucleus when activated upon binding androgens, whereby it regulates transcription of target genes via the classical genomic signalling pathway. We previously reported that AR protein is decreased in the lumbar spinal cord tissue of symptomatic male SOD1G93A mice. Here, we further explored the changes in AR within motor neurons (MN) of the CNS, assessing their nuclear AR content and propensity to degenerate by endstage disease in male SOD1G93A mice. We observed that almost all motor neuron populations had undergone significant loss in nuclear AR in SOD1G93A mice. Interestingly, loss of nuclear AR was evident in lumbar spinal MNs as early as the pre-symptomatic age of 60 days. Several MN populations with high AR content were identified which did not degenerate in SOD1G93A mice. These included the brainstem ambiguus and vagus nuclei, and the sexually dimorphic spinal MNs: cremaster, dorsolateral nucleus (DLN) and spinal nucleus of bulbocavernosus (SNB). In conclusion, we demonstrate that AR loss directly associates with MN vulnerability and disease progression in the SOD1G93A mouse model of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Andrógenos/metabolismo , Animales , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
12.
Cell Death Differ ; 29(6): 1187-1198, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34857917

RESUMEN

Amyotrophic lateral sclerosis (ALS) is caused by selective degeneration of motor neurons in the brain and spinal cord; however, the primary cell death pathway(s) mediating motor neuron demise remain elusive. We recently established that necroptosis, an inflammatory form of regulated cell death, was dispensable for motor neuron death in a mouse model of ALS, implicating other forms of cell death. Here, we confirm these findings in ALS patients, showing a lack of expression of key necroptotic effector proteins in spinal cords. Rather, we uncover evidence for ferroptosis, a recently discovered iron-dependent form of regulated cell death, in ALS. Depletion of glutathione peroxidase 4 (GPX4), an anti-oxidant enzyme and central repressor of ferroptosis, occurred in post-mortem spinal cords of both sporadic and familial ALS patients. GPX4 depletion was also an early and universal feature of spinal cords and brains of transgenic mutant superoxide dismutase 1 (SOD1G93A), TDP-43 and C9orf72 mouse models of ALS. GPX4 depletion and ferroptosis were linked to impaired NRF2 signalling and dysregulation of glutathione synthesis and iron-binding proteins. Novel BAC transgenic mice overexpressing human GPX4 exhibited high GPX4 expression localised to spinal motor neurons. Human GPX4 overexpression in SOD1G93A mice significantly delayed disease onset, improved locomotor function and prolonged lifespan, which was attributed to attenuated lipid peroxidation and motor neuron preservation. Our study discovers a new role for ferroptosis in mediating motor neuron death in ALS, supporting the use of anti-ferroptotic therapeutic strategies, such as GPX4 pathway induction and upregulation, for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ferroptosis , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
13.
Cells ; 9(11)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158177

RESUMEN

Over the past 20 years, there has been a drastically increased understanding of the genetic basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved intracellular "clearance" system delivering misfolded proteins, aggregates, and damaged organelles to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been examined or are being developed as potential treatments for ALS to date, and discuss potential therapeutic strategies for targeting autophagy in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Autofagia , Terapia Molecular Dirigida , Esclerosis Amiotrófica Lateral/genética , Animales , Restricción Calórica , Predisposición Genética a la Enfermedad , Humanos , Modelos Biológicos
14.
Cell Death Differ ; 27(5): 1728-1739, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31745214

RESUMEN

Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is proposed to occur by necroptosis, an inflammatory form of regulated cell death. Prior studies implicated necroptosis in ALS based on accumulation of necroptotic markers in affected tissues of patients and mouse models, and amelioration of disease in mutant superoxide dismutase 1 (SOD1G93A) mice with inhibition of the upstream necroptotic mediators, receptor interacting protein kinase 1 (RIPK1), and RIPK3. To definitively address the pathogenic role of necroptosis in ALS, we genetically ablated the critical terminal executioner of necroptosis, mixed lineage kinase domain-like protein (MLKL), in SOD1G93A mice. Disease onset, progression, and survival were not affected in SOD1G93A mice lacking MLKL. Motor neuron degeneration and activation of neuroinflammatory cells, astrocytes, and microglia, were independent of MLKL expression in SOD1G93A mice. While RIPK1 accumulation occurred in spinal cords of SOD1G93A mice in late stage disease, RIPK3 and MLKL expression levels were not detected in central nervous system tissues from normal or SOD1G93A mice at any disease stage. These findings demonstrate that necroptosis does not play an important role in motor neuron death in ALS, which may limit the potential of therapeutic targeting of necroptosis in the treatment of neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Necroptosis , Degeneración Nerviosa/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba
15.
Autophagy ; 14(3): 534-551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28980850

RESUMEN

Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Autofagia/efectos de los fármacos , Rilmenidina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Superóxido Dismutasa-1/genética
16.
JAMA Neurol ; 75(6): 681-689, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29507931

RESUMEN

Importance: Neuroinflammation appears to be a key modulator of disease progression in amyotrophic lateral sclerosis (ALS) and thereby a promising therapeutic target. The CD4+Foxp3+ regulatory T-cells (Tregs) infiltrating into the central nervous system suppress neuroinflammation and promote the activation of neuroprotective microglia in mouse models of ALS. To our knowledge, the therapeutic association of host Treg expansion with ALS progression has not been studied in vivo. Objective: To assess the role of Tregs in regulating the pathophysiology of ALS in humans and the therapeutic outcome of increasing Treg activity in a mouse model of the disease. Design, Setting, and Participants: This prospective multicenter human and animal study was performed in hospitals, outpatient clinics, and research institutes. Clinical and function assessment, as well as immunological studies, were undertaken in 33 patients with sporadic ALS, and results were compared with 38 healthy control participants who were consecutively recruited from the multidisciplinary ALS clinic at Westmead Hospital between February 1, 2013, and December 31, 2014. All data analysis on patients with ALS was undertaken between January 2015 and December 2016. Subsequently, we implemented a novel approach to amplify the endogenous Treg population using peripheral injections of interleukin 2/interleukin 2 monoclonal antibody complexes (IL-2c) in transgenic mice that expressed mutant superoxide dismutase 1 (SOD1), a gene associated with motor neuron degeneration. Main Outcomes and Measures: In patients with ALS, Treg levels were determined and then correlated with disease progression. Circulating T-cell populations, motor neuron size, glial cell activation, and T-cell and microglial gene expression in spinal cords were determined in SOD1G93A mice, as well as the association of Treg amplification with disease onset and survival time in mice. Results: The cohort of patients with ALS included 24 male patients and 9 female patients (mean [SD] age at assessment, 58.9 [10.9] years). There was an inverse correlation between total Treg levels (including the effector CD45RO+ subset) and rate of disease progression (R = -0.40, P = .002). Expansion of the effector Treg population in the SOD1G93A mice was associated with a significant slowing of disease progression, which was accompanied by an increase in survival time (IL-2c-treated mice: mean [SD], 160.6 [10.8] days; control mice: mean [SD], 144.9 [10.6] days; P = .003). Importantly, Treg expansion was associated with preserved motor neuron soma size and marked suppression of astrocytic and microglial immunoreactivity in the spinal cords of SOD1G93A mice, as well as elevated neurotrophic factor gene expression in spinal cord and peripheral nerves. Conclusions and Relevance: These findings establish a neuroprotective effect of Tregs, possibly mediated by suppression of toxic neuroinflammation in the central nervous system. Strategies aimed at enhancing the Treg population and neuroprotective activity from the periphery may prove therapeutically useful for patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Linfocitos T Reguladores/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Estudios Prospectivos , Superóxido Dismutasa/genética
17.
PLoS One ; 9(3): e90449, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24595038

RESUMEN

Bioenergetic abnormalities and metabolic dysfunctionoccur in amyotrophic lateral sclerosis (ALS) patients and genetic mouse models. However, whether metabolic dysfunction occurs earlyin ALS pathophysiology linked to different ALS genes remains unclear.Here, we investigatedAMP-activated protein kinase (AMPK) activation, which is a key enzyme induced by energy depletion and metabolic stress, inneuronal cells and mouse models expressing mutantsuperoxide dismutase 1 (SOD1)or TAR DNA binding protein 43 (TDP-43) linked to ALS.AMPKphosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated incytoplasmic granules in motor neurons, but not in pre-symptomatic mice. AMPK phosphorylation also occurred in peripheraltissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatictransgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase,protein phosphatase 2A (PP2A), is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlateswith progressionin mutant SOD1-mediated disease, AMPK inactivation mediated by PP2Ais associated withmutant TDP-43-linked ALS.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Proteínas Mutantes/metabolismo , Proteína Fosfatasa 2/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Ribonucleótidos/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/enzimología , Médula Espinal/patología , Superóxido Dismutasa/genética
18.
PLoS One ; 9(4): e95549, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740287

RESUMEN

Bioenergetic abnormalities and metabolic dysfunction occur in amyotrophic lateral sclerosis (ALS) patients and genetic mouse models. However, whether metabolic dysfunction occurs early in ALS pathophysiology linked to different ALS genes remains unclear. Here, we investigated AMP-activated protein kinase (AMPK) activation, which is a key enzyme induced by energy depletion and metabolic stress, in neuronal cells and mouse models expressing mutant superoxide dismutase 1 (SOD1) or TAR DNA binding protein 43 (TDP-43) linked to ALS. AMPK phosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated in cytoplasmic granules in motor neurons, but not in presymptomatic mice. AMPK phosphorylation also occurred in peripheral tissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatic transgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase, protein phosphatase 2A (PP2A), is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlates with progression in mutant SOD1-mediated disease, AMPK inactivation mediated by PP2A is associated with mutant TDP-43-linked ALS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA