Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Sustain Chem Eng ; 12(34): 12869-12878, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211381

RESUMEN

Lignin-derived styrene derivatives are versatile building blocks for the manufacture of biobased polymers. As shown previously, phenol-protected hydroxystyrenes are accessible under industrially sound conditions (>100 g L-1, >95% yield) by subjecting biogenic phenolic acids to enzymatic decarboxylation and base-catalyzed acylation in nonaqueous media (wet cyclopentyl methyl ether, CPME). Herein, we demonstrate the production of 1 kg of 4-acetoxy-3-methoxy-styrene in a 10 L reactor and present practical adjustments to the up- and downstream processing that warrant a straightforward process and high isolated yields. Additionally, an environmental assessment is conducted, starting with a thorough E factor analysis to identify the sources that contribute most to the environmental burden (solvent and downstream processing). Also, the total CO2 production of the process is studied, including contributions from energy use and the treatment of generated wastes. The energy impact is evaluated through thermodynamic analysis, and the environmental footprint contributions by wastes-organic and aqueous fractions-are assessed based on CO2 emissions from solvent incineration and wastewater treatment, respectively. Overall, the holistic assessment of the process, its optimization, scale-up, product isolation, and environmental analysis indicate the feasibility of multistep chemoenzymatic reactions to deliver high-volume, low-value chemicals from biorefineries.

2.
Commun Chem ; 7(1): 57, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485751

RESUMEN

The valorization of lignin-derived feedstocks by catalytic means enables their defunctionalization and upgrading to valuable products. However, the development of productive, safe, and low-waste processes remains challenging. This paper explores the industrial potential of a chemoenzymatic reaction performing the decarboxylation of bio-based phenolic acids in wet cyclopentyl methyl ether (CPME) by immobilized phenolic acid decarboxylase from Bacillus subtilis, followed by a base-catalyzed acylation. Key-to-success is the continuous control of water activity, which fluctuates along the reaction progress, particularly at high substrate loadings (triggered by different hydrophilicities of substrate and product). A combination of experimentation, thermodynamic equilibrium calculations, and MD simulations revealed the change in water activity which guided the integration of water reservoirs and allowed process intensification of the previously limiting enzymatic step. With this, the highly concentrated sequential two-step cascade (400 g·L-1) achieves full conversions and affords products in less than 3 h. The chemical step is versatile, accepting different acyl donors, leading to a range of industrially sound products. Importantly, the finding that water activity changes in intensified processes is an academic insight that might explain other deactivations of enzymes when used in non-conventional media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA