Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 73: 130-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25277755

RESUMEN

Although the precise signaling mechanisms underlying the vulnerability of some sub-populations of motoneurons in ALS remain unclear, critical factors such as metallo-proteinase 9 expression, neuronal activity and endoplasmic reticulum stress have been shown to be involved. In the context of SOD1(G93A) ALS mouse model, we previously showed that a two-fold decrease in calreticulin (CRT) is occurring in the vulnerable fast motoneurons. Here, we asked to which extent the decrease in CRT levels was causative to muscle denervation and/or motoneuron degeneration. Toward this goal, a hemizygous deletion of the crt gene in SOD1(G93A) mice was generated since the complete ablation of crt is embryonic lethal. We observed that SOD1(G93A);crt(+/-) mice display increased and earlier muscle weakness and muscle denervation compared to SOD1(G93A) mice. While CRT reduction in motoneurons leads to a strong upregulation of two factors important in motoneuron dysfunction, ER stress and mTOR activation, it does not aggravate motoneuron death. Our results underline a prevalent role for CRT levels in the early phase of muscle denervation and support CRT regulation as a potential therapeutic approach.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Calreticulina/metabolismo , Regulación de la Expresión Génica/genética , Neuronas Motoras/patología , Enfermedades Musculares/etiología , Degeneración Nerviosa/etiología , Factor de Transcripción Activador 6/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Calreticulina/genética , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Debilidad Muscular/etiología , Enfermedades Musculares/patología , Receptores Colinérgicos/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Serina-Treonina Quinasas TOR , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
2.
J Neurosci ; 32(14): 4901-12, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492046

RESUMEN

Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Calreticulina/antagonistas & inhibidores , Calreticulina/metabolismo , Estrés del Retículo Endoplásmico/genética , Neuronas Motoras/metabolismo , Receptor fas/genética , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutación/genética , Transducción de Señal/genética , Superóxido Dismutasa/genética
3.
Hum Mutat ; 34(7): 953-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568759

RESUMEN

The dihydropyrimidinase-like 3 (DPYSL3) or Collapsin Response Mediator Protein 4a (CRMP4a) expression is modified in neurodegeneration and is involved in several ALS-associated pathways including axonal transport, glutamate excitotoxicity, and oxidative stress. The objective of the study was to analyze CRMP4 as a risk factor for ALS. We analyzed the DPYSL3/CRMP4 gene in French ALS patients (n = 468) and matched-controls (n = 394). We subsequently examined a variant in a Swedish population (184 SALS, 186 controls), and evaluated its functional effects on axonal growth and survival in motor neuron cell culture. The rs147541241:A>G missense mutation occurred in higher frequency among French ALS patients (odds ratio = 2.99) but the association was not confirmed in the Swedish population. In vitro expression of mutated DPYSL3 in motor neurons reduced axonal growth and accelerated cell death compared with wild type protein. Thus, the association between the rs147541241 variant and ALS was limited to the French population, highlighting the geographic particularities of genetic influences (risks, contributors). The identified variant appears to shorten motor neuron survival through a detrimental effect on axonal growth and CRMP4 could act as a key unifier in transduction pathways leading to neurodegeneration through effects on early axon development.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Proteínas Musculares/genética , Mutación Missense , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/etnología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Axones/metabolismo , Muerte Celular/genética , Células Cultivadas , Femenino , Francia/epidemiología , Humanos , Masculino , Ratones , Neuronas Motoras/citología , Suecia/epidemiología
4.
J Neurosci ; 30(2): 785-96, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071543

RESUMEN

Embryonic motoneurons from mutant SOD1 (mSOD1) mouse models of amyotrophic lateral sclerosis (ALS), but not wild-type motoneurons, can be triggered to die by exposure to nitric oxide (NO), leading to activation of a motoneuron-specific signaling pathway downstream of the death receptor Fas/CD95. To identify effectors of mSOD1-dependent cell death, we performed a proteomic analysis. Treatment of cultured mSOD1 motoneurons with NO led to a 2.5-fold increase in levels of collapsin response mediator protein 4a (CRMP4a). In vivo, the percentage of mSOD1 lumbar motoneurons expressing CRMP4 in mSOD1 mice increased progressively from presymptomatic to early-onset stages, reaching a maximum of 25%. Forced adeno-associated virus (AAV)-mediated expression of CRMP4a in wild-type motoneurons in vitro triggered a process of axonal degeneration and cell death affecting 60% of motoneurons, whereas silencing of CRMP4a in mSOD1 motoneurons protected them from NO-induced death. In vivo, AAV-mediated overexpression of CRMP4a but not CRMP2 led to the death of 30% of the lumbar motoneurons and an 18% increase in denervation of neuromuscular junctions in the gastrocnemius muscle. Our data identify CRMP4a as a potential early effector in the neurodegenerative process in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuronas Motoras/metabolismo , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Superóxido Dismutasa/genética , Regulación hacia Arriba/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Axones/fisiología , Muerte Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Electroporación/métodos , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Mutantes , Neuronas Motoras/patología , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/genética , Óxido Nítrico/farmacología , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Médula Espinal/citología , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
5.
Curr Opin Neurobiol ; 18(3): 284-91, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18725296

RESUMEN

Cell death plays an important role both in shaping the developing nervous system and in neurological disease and traumatic injury. In spite of their name, death receptors can trigger either cell death or survival and growth. Recent studies implicate five death receptors--Fas/CD95, TNFR1 (tumor necrosis factor receptor-1), p75NTR (p75 neurotrophin receptor), DR4, and DR5 (death receptors-4 and -5)--in different aspects of neural development or degeneration. Their roles may be neuroprotective in models of Parkinson's disease, or pro-apoptotic in ALS and stroke. Such different outcomes probably reflect the diversity of transcriptional and posttranslational signaling pathways downstream of death receptors in neurons and glia.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Receptores de Muerte Celular/metabolismo , Transducción de Señal/fisiología , Animales
6.
Neuron ; 35(6): 1067-83, 2002 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12354397

RESUMEN

Death pathways restricted to specific neuronal classes could potentially allow for precise control of developmental neuronal death and also underlie the selectivity of neuronal loss in neurodegenerative disease. We show that Fas-triggered death of normal embryonic motoneurons requires transcriptional upregulation of neuronal NOS and involves Daxx, ASK1, and p38 together with the classical FADD/caspase-8 cascade. No evidence for involvement of this pathway was found in cells other than motoneurons. Motoneurons from transgenic mice overexpressing ALS-linked SOD1 mutants (G37R, G85R, or G93A) displayed increased susceptibility to activation of this pathway: they were more sensitive to Fas- or NO-triggered cell death but not to trophic deprivation or excitotoxic stimulation. Thus, triggering of a motoneuron-restricted cell death pathway by neighboring cells might contribute to motoneuron loss in ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/metabolismo , Muerte Celular/genética , Sistema Nervioso Central/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neuronas Motoras/metabolismo , Mutación/genética , Superóxido Dismutasa/metabolismo , Receptor fas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas Portadoras/metabolismo , Caspasa 8 , Caspasa 9 , Caspasas/metabolismo , Células Cultivadas , Proteínas Co-Represoras , Proteína de Dominio de Muerte Asociada a Fas , Femenino , Feto , Ligamiento Genético/genética , MAP Quinasa Quinasa Quinasa 5 , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Superóxidos/metabolismo , Regulación hacia Arriba/genética , Receptor fas/genética , Proteínas Quinasas p38 Activadas por Mitógenos
8.
J Neurosci ; 23(24): 8526-31, 2003 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-13679421

RESUMEN

Activation of the Fas death receptor leads to the death of motoneurons in culture. To investigate the role of Fas in programmed cell death and pathological situations, we used several mutant mice deficient for Fas signaling and made a novel transgenic FADD-DN (FAS-associated death domain-dominant-negative) strain. In vitro, motoneurons from all of these mice were found to be resistant to Fas activation and to show a delay in trophic deprivation-induced death. During normal development in vivo, no changes in motoneuron survival were observed. However, the number of surviving motoneurons was twofold higher in animals deficient for Fas signaling after facial nerve transection in neonatal mice. These results reveal a novel role for Fas as a trigger of axotomy-induced death and suggest that the Fas pathway may be activated in pathological degeneration of motoneurons.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neuronas Motoras/fisiología , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Receptor fas/metabolismo , Actinas/genética , Animales , Apoptosis/fisiología , Axotomía , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Nervio Facial/fisiología , Proteína de Dominio de Muerte Asociada a Fas , Genes Dominantes , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Receptor fas/genética , Receptor fas/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-25336041

RESUMEN

Mutations in the SOD1 gene encoding the Cu/Zn superoxide dismutase-1 protein are responsible for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. To date a large number of mutations have been reported in SOD1, but only few of them have been studied and validated by functional studies. We present a novel mutation in SOD1 in a female suffering from slowly progressive ALS. This dominant mutation (c.365A > G) in exon 5 resulted in a substitution of a highly conserved amino acid (p.E121G) of the protein. Functional studies in the motor neuronal cell line NSC34 and in primary culture of mouse motor neurons revealed that this mutation p.E121G induced aggregates positive for SOD1 and ubiquitin, as well as reduced cell viability. These findings identified a novel causal mutation in ALS in close proximity with one of the three histidine residues (H120) of SOD1 interacting with copper.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Mutación/genética , Superóxido Dismutasa/genética , Anciano , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Biología Computacional , Análisis Mutacional de ADN , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Modelos Moleculares , Conducción Nerviosa/genética , Superóxido Dismutasa-1 , Transfección
10.
BMC Neurosci ; 5: 48, 2004 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-15569384

RESUMEN

BACKGROUND: Programmed cell death of motoneurons in the developing spinal cord is thought to be regulated through the availability of target-derived neurotrophic factors. When deprived of trophic support, embryonic spinal motoneurons in vitro over-express FasL, a ligand activating a Fas-mediated death pathway. How trophic factors regulate the expression of FasL is presently unclear, but two regulators of FasL, FOXO3a (FKHRL1) and JNK have been described to play a role in other cell types. Thus, their potential function in motoneurons was investigated in this study. RESULTS: We show here that as a result of removal of neurotrophic factors and the consequent reduction in signalling through the PI3K/Akt pathway, Foxo3a translocates from the cytoplasm to the nucleus where it triggers cell death. Death is reduced in Fas and FasL mutant motoneurons and in the presence of JNK inhibitors indicating that a significant part of it requires activation of the Fas/FasL pathway through JNK. CONCLUSIONS: Therefore, in motoneurons as in other cell types, FOXO transcriptional regulators provide an important link between other signalling pathways and the cell death machinery.


Asunto(s)
Apoptosis , Factores de Transcripción Forkhead/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas Motoras/metabolismo , Animales , Células Cultivadas , Proteína Ligando Fas , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/análisis , Sistema de Señalización de MAP Quinasas , Ratones , Neuronas Motoras/citología , Neuronas Motoras/enzimología
11.
Biomaterials ; 35(24): 6248-58, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24814425

RESUMEN

The present study is designed to assess the properties of a new degradable PLA-b-PHEMA block copolymer hydrogel and its therapeutic effectiveness after implantation following a thoracic spinal cord hemisection on rats. Degradable characteristics and porous aspect of the scaffold are respectively analyzed by the evaluation of its mass loss and by electron microscopy. The biomaterial toxicity is measured through in vitro tests based on motoneuron survival and neurite growth on copolymer substrate. Functional measurements are assessed by the Basso, Beattie and Bresnahan (BBB) and the Dynamic Weight Bearing (DWB) tests during 8 weeks post-surgery. Histological analyses are achieved to evaluate the presence of blood vessels and axons, the density of the glial scar, the inflammatory reaction and the myelination at the lesion site and around it. The results indicate that the synthetic PLA-b-PHEMA block copolymer is a non-toxic and degradable biomaterial that provides support for regenerating axons and seems to limit scar tissue formation. Additionally, the implantation of the porous PLA-b-PHEMA scaffold enhances locomotor improvement. The observed functional recovery highlights the potential benefits of plain tissue engineering material, which can further be optimized by bioactive molecule functionalization or transplanted cell encapsulation.


Asunto(s)
Ácido Láctico/farmacología , Polihidroxietil Metacrilato/farmacología , Polímeros/farmacología , Implantación de Prótesis , Traumatismos de la Médula Espinal/patología , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácido Láctico/química , Ácido Láctico/toxicidad , Masculino , Actividad Motora/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Poliésteres , Polihidroxietil Metacrilato/química , Polihidroxietil Metacrilato/toxicidad , Polímeros/química , Polímeros/toxicidad , Porosidad , Presión , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/cirugía , Andamios del Tejido/química , Soporte de Peso
12.
J Neurodegener Dis ; 2013: 746845, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26316997

RESUMEN

While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-ßR, and p75(NTR) signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.

14.
PLoS One ; 6(8): e23244, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21876739

RESUMEN

The human SOD1(G93A) transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1(G93A) transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.


Asunto(s)
Sustitución de Aminoácidos/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/enzimología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Marcha/fisiología , Miembro Posterior/patología , Miembro Posterior/fisiopatología , Humanos , Imagen por Resonancia Magnética , Tamizaje Masivo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculos/patología , Atrofia Muscular/complicaciones , Atrofia Muscular/fisiopatología , Unión Neuromuscular/patología , Tamaño de los Órganos , Reproducibilidad de los Resultados , Factores de Tiempo
15.
J Neurobiol ; 62(2): 178-88, 2005 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-15459896

RESUMEN

Fas-induced death of motoneurons in vitro has been shown to involve two signaling cascades that act together to execute the death program: a Fas-Daxx-ASK-1-p38 kinase-nNOS branch, which controls transcriptional and post-translational events, and the second classical Fas-FADD-caspase-8 branch. To analyze the role of Daxx in the developmental motoneuron cell death, we studied Fas-dependent cell death in motoneurons from transgenic mice that overexpress a dominant-negative form of Daxx. Motoneurons purified from these transgenic mice are resistant to Fas-induced death. This protective effect is specific to Fas because ultraviolet irradiation-triggered death is not affected by the transgene. The Daxx and the FADD pathways work in parallel because only Daxx, but not FADD, is involved in the transcriptional control of neuronal nitric oxide synthase and nitric oxide production. Nevertheless, we do not observe involvement of Daxx in developmental motoneuronal cell death, as the pattern of naturally occurring programmed cell death in vivo is normal in transgenic mice overexpressing the dominant negative form of Daxx, suggesting that Daxx-independent pathways are used during development.


Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas Motoras/citología , Proteínas Nucleares/metabolismo , Médula Espinal/citología , Receptor fas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de la radiación , Proteínas Portadoras/genética , Recuento de Células/métodos , Proteínas Co-Represoras , Embrión de Mamíferos , Proteína Ligando Fas , Técnica del Anticuerpo Fluorescente/métodos , Genes Dominantes , Proteínas Fluorescentes Verdes/metabolismo , Etiquetado Corte-Fin in Situ/métodos , Indoles , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Proteínas Nucleares/genética , Oligopéptidos , Péptidos/metabolismo , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
16.
Biochem Biophys Res Commun ; 324(1): 288-93, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15465016

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by a progressive loss of the spinal motoneurons. The SMA-determining gene has been termed survival motor neuron (SMN) and is deleted or mutated in over 98% of patients. The encoded gene product is a protein expressed as different isoforms. In particular, we showed that the rat SMN cDNA produces two isoforms with M(r) of 32 and 35kDa, both localized in nuclear coiled bodies, but the 32kDa form is also cytoplasmic, whereas the 35kDa form is also microsomal. To determine the molecular relationship between these two isoforms and potential post-translational modifications, we performed transfection experiments with a double-tagged rat SMN. Immunoblot and immunostaining studies demonstrated that the 32kDa SMN isoform derives from the full length 35kDa, through a proteolytic cleavage at the C-terminal. Furthermore, the 35kDa SMN isoform is physiologically phosphorylated in vivo. This may modulate its interaction with molecular partners, either proteins or nucleic acids.


Asunto(s)
Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Células 3T3 , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Ratones , Peso Molecular , Neuronas Motoras/citología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/genética , Fosforilación , Isoformas de Proteínas/genética , Proteínas de Unión al ARN , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Complejo SMN , Médula Espinal/citología , Proteína 1 para la Supervivencia de la Neurona Motora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA